平成年度育成試験課題

整理番号 13神-6

- DADEA 1/1 12	
担当者	教授 北原時雄
実施機関及び	湘南工科大学 工学部 機械工学科
育成試験の名称	生産機械のマイクロ化に関する研究

育成試験の目的・目標

著しい省エネルギー効果が期待できるマイクロ生産機械について、その実用化に必要な 基礎的技術データの取得、及び実現可能性の実証を行う。

代表的な生産機械として旋盤を取り上げ、実用化という視点でプロトタイプのマイクロ 旋盤を開発試作し、マイクロ部品旋削実験によってその性能を検証する。一方、各種生産 機械のマイクロ化設計を容易にするために、それらの共通基本構成要素である回転主軸系 と直動機構系を取り上げ、剛性と振動、及び発熱と伝熱についての実験的検討を行う。

また、構造体製作への接着適用法について検討する。

試験方法と内容

試験項目 内容

試作及び性能検証

実用マイクロ旋盤の開発! 実用化の視点で、プロトタイプのマイクロ旋盤を開発し、 その性能を検証した。この開発における目標仕様は、外形寸 法約 10cm 立方、消費動力約 100W であり、主軸系と直動機 構系にモジュラー構造を採用した。

マイクロ化設計基準の明 確化

主軸系及び直動機構系について、その剛性・振動と発熱・ 伝熱の理論的・実験的検討を行った。また、構造体製作にお ける接着適用法を検討した。これらの結果に基づいてマイク 口化設計基準を明確化する。

予算額 2.000.000円

試験結果

実用化という視点から、市販の小型機械部品を極力利用してマイクロ旋盤を開発した。 その結果、外形が幅 195mm、奥行 178mm、高さ 105mm となり、開発目標とした大きさ に対して大きなものとなった。その構造は、主軸系と直動機構系をモジュール化にした。 詳細な性能確認を継続実施中である。

主軸系の発熱・放熱や、新型軸継手のトルク伝達性能等について実験的検討を行った。 主軸系の振動についても実験継続中である。

また、構造体接着法に関しては、調査及び実験検討を行いその有効性を確認した。

現在の状況及び今後の展開方策

平成 14年 10月 28日に育成試験成果の発表を兼ねて、RSP新技術フォーラム「マイク ロマシン・マイクロファクトリー」を開催し、マイクロマシンの実用化について産業界へ の普及を行った。また、マイクロマシンの実用化研究会として、北原時雄教授を主査とし て、産官学から 25 名以上の参加をえて、微細機械加工・マイクロマシンの地域研究開発 拠点としての機能を果たしていくことを目指した精密工学会「加工機械のマイクロ化分科 会」を平成14年2月に発足させ調査研究を実施し、その成果が認められ、17年2月に 研究会への格上げとなり調査研究は継続中である。更に,かながわ研究交流推進協議会 (KANAX)プロジェクトに「マイクロファクトリの実用化研究」で応募し、15・16年度 と2年連続で採択され、RSP育成試験を実施した大学研究者4名を中心に産学共同活動を 継続中である。

育成試験の成果が生かされ、(株) ナノから超小型精密 CNC 旋盤が商品化された。 教育 用及び実用機として大学や研究所に納入されている。