
様式 7

寈成盛		，またはシーズ		金額		化）			成果2（他事業入	開		果3	春用化／起業化	
13	談		中里 賢一 (北里	＊2，000， 000	$\begin{aligned} & 2002-2 \\ & 80292 \end{aligned}$	電気浸透流ポンプ	$\mathrm{J} \mathrm{~S} \mathrm{~T}$	\|中里賢	研究成果最適移転 事業プログラムB （独創玵＂M化）		林神和 北里大学			
13		溶融塩によるポり塩化ビニル （PVC）の化学処理システムの開発	朝会祝治 ${ }^{\text {学 }}$（横浜国						即効型地域新生コ開発事業		横浜国立大学学， 			
									委託關発事業	の再配絽加工接私 				
13	験	アタタルの形成	院大学）						研究成果最適移転事業（独創モデル化）					
									即効型地域新生コ ンソーシアム研究開発事業			起業	東京ダイレック社長が代表取締 を行う。	
									平成 14 年度大学等 	高性能襐化䍗置 	東京ダイレック森 ミドリ安全エア・クオリティ㨆			
					$2002-$ 102432	気体検知方法及び気体検知装置			研究成果最適移転 事業プログラムB 			商品	ホルムアルデヒド比色計セット	䏫力ステッシ
					$\begin{aligned} & 2002- \\ & 264358 \end{aligned}$	測定対象がスの測定方法，測定装置および抁散スクラバー		田中茂						
14	器椱	機能的電気刺激による片麻㾝患者の歩行再建	寞累）（豊）魔義塾	¥1，800，000								褰用	麻庫患者用歩行補助システム	\|榿本霜子I
14	談	局在表面ブラズモンを使った高密度ぐイオセンシンクシステム	根川 浩太郎（東京工業大学）	\％1，700，000	$\begin{aligned} & 2003- \\ & 400520 \end{aligned}$	局在化表面プラズモンセンサ， センシング装置およびセンジ グ方法	財国法人 	根川溇太郎						
14	試	新規画像形成法を基盤とするポ リマー光導波路の開発	友井，大山（横浜国立大学）	¥1，800，000					研究成果最適移転事業（技衔加工）	超微細配綿回路基板	｜横逶園竜大子			
14	詞	新規電子移動触媒による殺菌•消莫装置の開発		\％1，500，000								搴用	病院等のホルマリン含有排水の分解处理装置	$\left\lvert\, \begin{aligned} & \text { 尃オキシ } \\ & \text { 麻常光光 } \end{aligned}\right.$

育成	武	またはシーズ			成果1	（特許化）			成果2（他事業－	展開）		成果	3 （商品化／実用化／起業化）	
年度		課顛名，またはシーズ内容	研究者（実施機	金額	出願番号	特許の名称	出願人		事業名	内容	実施機関	分類	内容	企業名
14	試	テイッシエエジニアリングによる組織再生	井上，整（聖マリ	00		気管移植片の調製方法，気管移植片および湅結乾燥気管マ下 リック片	$\begin{aligned} & \text { 学校法人 } \\ & \text { 聖学〉矤科 } \\ & \text { 学 S T } \\ & \text { J S T } \end{aligned}$	井上茀萣田久蝣熊谷憲夫						
14		の基砹的，臨床的研究	アンナ医科大学）		$\begin{gathered} 2003-373150 \\ \begin{array}{c} (3002 \text { 権 } \\ 20145) \\ 324145) \end{array} \\ \hline \end{gathered}$	気管移植片の調整方法気管移植片，谏結乾燥気管マトリックす片および細胞の播種方法								
		リアルタイム4次元（XYZ t）	石田 英之（束海	Y2， 000,000	$\stackrel{2002^{-}}{351577}$	共焦点顛微鏡装置	学校法人東海大学 J S T	鿬英之				$\begin{aligned} & \text { 商品. } \end{aligned}$	リアルタイム 3 次元観察装置 リアルタイム 3 次元観察システ	イメージ
14	験	立体動画像键察システム	大学）	¥2，000，000	$\begin{gathered} 2005 \\ 0001157 \end{gathered}$	Confocal icroscope Apparatus	J S T	石田英之				起業	イメージ・ワークス郴	ワークス
14	$\begin{aligned} & \text { 試 } \\ & \text { 験 } \end{aligned}$	局在表面プラズモンを使った高密度バイオセンシングシステム	梶川 浩太郎（東京工業大学）	¥1，700， 000					戦略的創造研究 推 （さ事きかけポスド （参加型）	局在ブラズキンの非線形光学と高密度べ	東京工業大学			
													アンモニアガスセンサ	（森SNT
												$\left\lvert\, \begin{array}{\|l\|} \hline \text { 商品 } \\ \text { 化 } \end{array}\right.$	介護システム	郴SNT
14	$\left\lvert\, \begin{gathered} \text { 試 } \\ \text { 験 } \end{gathered}\right.$	ナノ構造制御交互積層法を用い た超高比表面積材料の開発	白鳥世明（慶應義竍大学）	¥1，800， 000								$\left\lvert\, \begin{array}{\|l\|} \mid \text { 実用 } \\ \text { 化 } \end{array}\right.$	食心゙ごろ判定シート	（森SVT
												$\left\lvert\, \begin{array}{\|l\|} \hline \text { 商品 } \\ \text { 化 } \end{array}\right.$	口臭センサ	${ }^{\text {林SNT }}$
									大学発事業創出実用化研究開発事業	ナノテク及びITネットワークを活用 した嘸境センシンク浄化システムの研究開発	萑原実業森，慶応義墪大学			
14	$\begin{aligned} & シ \\ & 1 \\ & \text { ズ } \end{aligned}$	光線力学的療法剤，新規なキノ キサリン誘導体および医薬組成物	戸嶋一敦（北里大学）		$\begin{gathered} 2002- \\ 168531 \end{gathered}$	光線力学的療法剤，新規なキノ キサリン誘導体および医薬組成物	$\begin{aligned} & \text { 学校法人慶 } \\ & \text { 㕒熱, J } \\ & \text { ST } \end{aligned}$	戸嶋一敦						
							学校法人慶		大学発事業創出実用化研究開発事業 （F／S）	三次元運動䡛跡測定装置の開発	慶応義曈大学			
									大学発事業創出実用化研究開発事業		慶応義塾大学，啉ナ，	商品	NANOWAVE MTS5，MTS6（A3サイズ のCNCマイクロマシニングセン	䦥ナノ
16	試		北原時雄（湘南工科大学）	¥4，000， 000	$\begin{aligned} & 2005- \\ & 31108 \end{aligned}$	工具自動交換装置，工具交換方法及びそれを利用した工作機械	（䊾ナ）	北原時雄三井公之林亮						

育成	武験	またはシーズ			成果1	特許化）			成果2（他事業へ	展開）		成果3	（商品化／実用化／起業化）	
年度		䟵䝷名，またはシーズ内容	研究者（実施機	金額	出願番号	特許の名称	出願人	発明者	事業名	内容	実施機関	分類	内容	企業名
14	\|試	水の運動㙏神ぎを利用して駆動す る超精密スビンド＊装置		¥1，900， 000	$\begin{gathered} 2003- \\ 113504 \end{gathered}$	スピンドル装置	J S T	$\begin{array}{\|l\|} \hline \text { 中尾陽一 } \\ \text { 林 } \end{array}$						
15	\|試	水駆動•水静圧による超精密ス ピンドル		¥1，800， 000					研究成果最適移転事業（技術加工）	水駆動•水静圧による超精密ス ピンドル				
15	試	機能性高分子による防食被覆膜 の開発と防食方法		¥1，000， 000	$\begin{gathered} 2004- \\ 299078 \end{gathered}$	銅材の電気化学的防食膜	ユニコロイ ド株，神奈川県，横浜国立大学							
15	試	血中C型旰炎ウイルスの捕獲	長井辰夫（北里大	¥2，000， 000	$\begin{aligned} & 2004- \\ & 246483 \end{aligned}$	サーモコロイドの粒形分布測定 によるB型／C型肝炎ウィルス関連肝疾患の検査方法及び検査装置	$\begin{aligned} & \text { 北里学園 } \\ & \text { J S } \end{aligned}$	長其辰夫，						
					${ }_{340726}^{2002-}$	C型幵炎欏患検查方法	$\begin{aligned} & \text { 北里大学, } \\ & \text { J S T } \end{aligned}$	長井辰男岡崎登志夫						
15	試	小型高推カスパイラルモータの開発	藤本 康孝（横浜国立大学）	¥2，000， 000	$\begin{aligned} & 2004- \\ & 059727 \end{aligned}$	スパイラル型リニアモータ	$\begin{aligned} & \text { よこはま T } \\ & \text { LO } \end{aligned}$	藤本康素						
15	$\begin{aligned} & \text { シ } \\ & \text { I } \\ & \text { R } \end{aligned}$	酸化傷害タンパク質解析用夕 グ，及び該タグを用いる酸化傷害タンパク質の検出方法	小寺義男，前田忠計（北里大学）		$\begin{aligned} & 2004- \\ & 133054 \end{aligned}$	酸化傷害タンパク質解析用夕 グ，及び該タグを用いる酸化傷害タンパク質の検出方法	$\begin{aligned} & \text { 北里大学, } \\ & \text { J S } \end{aligned}$	$\begin{aligned} & \text { 小寺義男, } \\ & \text { 前田計 } \end{aligned}$						
15	$\left\|\begin{array}{c} シ \\ 1 \\ x \end{array}\right\|$	標的物質濃縮用機能性夕グ，及 び該機能性タグの使用方法	小寺義男，前田忠計（北里大学）		$\begin{aligned} & 2004- \\ & 105405 \end{aligned}$	標的物質滞縮用機能性夕グ，及 び該機能性タグの使用方法	$\begin{array}{\|l\|l\|} \hline \text { 北大学, } \\ \text { J S T } \end{array}$	小寺義男，前田忠計						
16	試	非発光時に透明な有機 E L の開	内田孝幸（東京工芸大学）	¥2，000， 000	$\begin{aligned} & 2004- \\ & 252934 \end{aligned}$	フレキシブル透明有機エレクト ロルミネッセンス装置	$\begin{aligned} & \text { 東京工芸大 } \\ & \text { 学 } \mathrm{J} \text { S T } \end{aligned}$	内田素幸						
		生体親和型磁性ナノ・マイクロ	車田研一（横㳋国		$\begin{aligned} & 2005- \\ & 012652 \end{aligned}$	複合粒子およびその製造方法		䡠鮪研憲三						
16	験			12，00，00	$\begin{gathered} 2005- \\ 012649 \end{gathered}$	燐酸カルシウム被覆微小球体，及び，その製造方法		䡠鮪研攇						
16	\|試	超微細組織材料創製のためのね じり押出し法の開発	水沼晋（神奈川工科大学）	¥2，000， 000	2005－ 70862	中空材のねじり加工法	J S T	水沼晋						
16	試験	遺伝子発現のリアルタイムモニ タリング技術を活用した生細胞 の応用	古久保哲朗（横浜市立大学）	¥2，000， 000	$\begin{gathered} 2005- \\ 064852 \end{gathered}$		横浜市	古久保哲朗，杉原文德						
16	険	環境低負荷な $\beta-\mathrm{FeSi}$ i2薄膜を用いた太陽電池の開発	秋山賢輔（神奈川県産業技術総合研究所）／舟窪浩 （東京工業大学）	¥2，000， 000	$\begin{aligned} & 2005- \\ & 047034 \end{aligned}$	半導体素子	神奈川県	秋山賢輔，金子萛。舟寉浩						

