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Robotic humanoid systems are becoming a realization of science fiction into science fact. 

Despite popular assertions, a robot is defined as a machine (embodied in some physical form) 
that acts (or actuates its motors) based on information about its environment (provided by its 
sensors). Based on this definition, a robot is inherently autonomous and consists of three 
primary components: actuators, sensors, and a control policy. Advances in Engineering and 
Materials Science have culminated into humanoid systems that are approaching the actuation 
capabilities of human beings. In parallel, there is ongoing proliferation of increasingly smaller 
and cheaper sensing technologies providing robots with richer and more accurate information 
about their environment. 

As sensing and actuation technologies advance with faster computing, one might believe 
crafting autonomous robot control policies would be a relatively achievable task. 
Unfortunately, we have found this not to be the case as autonomous control of humanoids has 
remained a difficult problem in robotics and related areas of research (e.g., computer 
animation, artificial intelligence, biomechanics). Even when restricted to limited domains, the 
manual crafting of a control policy can be a tedious and time-consuming endeavor that may 
not afford scaling to wider classes of behavior. The difficulty surrounding autonomous 
humanoids involves several challenges for low-level control (such as following desired 
motions, locomotion, maintaining balance, manipulating objects) and high-level decision 
making (i.e., directing low-level control to achieve objectives). 

A viable approach to autonomous control is learning from human demonstration. Human 
beings have control policies that allow us to be functional for moving about in a dynamic 
world. These policies are internal and unconscious to humans and, thus, difficult to form into 
a computational mechanism. However, we are able to externally observe human performance 
resulting from these internal policies. Data collected from human demonstration have the 
potential to be reverse engineered into computational control policies for humanoid motion. 
In order to learn from demonstration, we must address three basic issues:  

-Acquisition: how to acquire human motion performed in the real world into a digital form? 
-Learning: how to uncover latent structures underlying collected motion data? 
-Utilization: how to utilize uncovered structures for control and perception to further robot 

autonomy?  
This talk will present recent research advancements in the acquisition, learning, and 

utilization of human demonstration for autonomous humanoid control. In terms of motion 
acquisition, we will describe traditional constrained approaches to human motion capture, 
untethered motion capture with inertial sensing, and markerless motion capture from multiple 
viewpoints. We will summarize recent methods in manifold learning and dimensionality 
reduction and the application of these methods to learning models of human motion. In 
particular, we describe our work on learning modular vocabularies of exemplar-based 
primitives expressing the nonlinear dynamics of human behavior. Lastly, applications of 
learned motion models to low-level humanoid control, dynamic interactions for physically 
animated humanoid characters, and perception of human activity will be presented. 
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Keywords:  
Humanoid robot: a machine with a human-like physical structure that acts based on sensory 
information 
 
Control policy: a function that maps that state of a robot's system into a control command for 
its actuators 
 
Learning from demonstration: for robots, the process of automatically creating a control 
policy from an external demonstration 
 
Motion capture: the recording of movement performed by physical entities for immediate or 
delayed analysis and playback 
 
Manifold learning: statistical methods for uncovering the manifold underlying a dataset  
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