. その他

## 1.周辺技術動向、パテントマップ、技術マップ

# (<u>1)周辺技術動向</u>

| [研究テーマ:超  | ]精密高速ステージの開発]           |                            |  |  |  |  |  |
|-----------|-------------------------|----------------------------|--|--|--|--|--|
| 研究成果の要点   | 非共振型圧電アクチュエータによ         | 、るダイレクトドライブ方式を用い、静止位置決め精度  |  |  |  |  |  |
|           | ±0.6nm、速度 300mm/sec を実現 | している。                      |  |  |  |  |  |
| 既存技術      | 半導体製造プロセスに使用するス         | ステージとして、1)浮上磁気リニアモーター方式 2) |  |  |  |  |  |
|           | 共振型圧電アクチュエータ方式          | 3)圧電インパクト方式がある             |  |  |  |  |  |
| 既存技術の     | D問題点                    | 既存技術に対する本技術の優位性            |  |  |  |  |  |
| 1) 浮上している | ため制定制御が必要であるが、装         | 1) 非共振型であるため、電圧+周波数制御が容易   |  |  |  |  |  |
| 置が大型化す    | るのに対応出来ない。              | 2) ダイレクトドライブ方式により繰り返し静止位   |  |  |  |  |  |
| 2) 磁気シールト | が必要となり装置の重量増大に          | 置決め精度が高い                   |  |  |  |  |  |
| 繋がる       |                         | 3) 非磁性のため、磁気シールドが不要であるとと   |  |  |  |  |  |
| 3) 共振励起パワ | ーがいるため、非線形制御が必要         | もに、アクチュエータ単体で 1 軸をドライブ出    |  |  |  |  |  |
| となるととも    | に、共振ストローク以下の位置決         | 来、装置がコンパクト化出来る             |  |  |  |  |  |
| めが不可能     |                         | 4)ゼロ膨張セラミック材をベースに使用し、薄肉構   |  |  |  |  |  |
| 4) 圧電インパク | トによる動摩擦があるため、素子         | 造により従来の 1/3 の軽量化を達成している    |  |  |  |  |  |
| 磨耗が大きい    |                         |                            |  |  |  |  |  |
| 競合技術の状況   | イスラエル、ナノモーション社          | 製超音波モータが比較対象となる。この超音波モータ   |  |  |  |  |  |
| と比較       | は共振原理を応用しており、現在         | Eの性能は以下の通りである。             |  |  |  |  |  |
|           | ・位置分解能 5nm              |                            |  |  |  |  |  |
|           | ・最高速度 200mm/s           |                            |  |  |  |  |  |
|           | ・速度リップル 10 μ m 以上       |                            |  |  |  |  |  |
|           | 一方で、今回開発した非共振型          | と超音波モータの性能は、               |  |  |  |  |  |
|           | ・位置分解能 0.6nm            |                            |  |  |  |  |  |
|           | ・最高速度 360mm/s           |                            |  |  |  |  |  |
|           | ・速度リップル 17nm 以下@3       | 6mm/s 移動時                  |  |  |  |  |  |
|           | と、各性能面で上回っている。そ         | して、ステージへの取り付け方法や、摺動部分での摩   |  |  |  |  |  |
|           | 耗に対する対策には最新理論を招         | 採用しており、高い耐久性と共に、簡単な取り付けを実  |  |  |  |  |  |
|           | 現している。                  |                            |  |  |  |  |  |
|           |                         |                            |  |  |  |  |  |

| [研究テーマ:            | 高速 LSI テスト手法開発]                                     |     |                                 |  |  |  |  |  |
|--------------------|-----------------------------------------------------|-----|---------------------------------|--|--|--|--|--|
| 研究成果の要点            | 高速な半導体テスタを使わない高速 1/0 テスト方式を提案した。高周波特性に優れ            |     |                                 |  |  |  |  |  |
|                    | │ RF(高周波)リレーを提案し、解析した結果8GHzまで対応できることが分かった           |     |                                 |  |  |  |  |  |
| 既存技術               | 半導体の現場では、高速 1/0 のテ                                  | ースト | スト方式は実施されていない。既存の RF リレーの最      |  |  |  |  |  |
|                    | 高周波数は2GHz である。                                      |     |                                 |  |  |  |  |  |
| 既存技術(              | D問題点                                                |     | 既存技術に対する本技術の優位性                 |  |  |  |  |  |
| 1) 半導体製造現          | 1場における高速 I/0 テストは、高                                 | 1)  | 開発する半導体とテスト基板上で 1/0 のテスト        |  |  |  |  |  |
| 速かつ高価な             | こテスタが必要になり、現実に困難                                    |     | が出来るため、従来の低価格のテストを使って           |  |  |  |  |  |
| であった。              |                                                     |     | テストできる。                         |  |  |  |  |  |
| 2) RF リレーは、        | 、高周波になるとアイソレーショ                                     | 2)  | RF リレーの構造を変えることにより、インサー         |  |  |  |  |  |
| ン(スイッチ             | がオフのときの漏れ)が著しく悪                                     |     | ションロスが 8GHz で-30dB 以下にすることを解    |  |  |  |  |  |
| 化するため、高周波化が困難であった。 |                                                     |     | 析(高周波 3 次元シミュレーション)により得         |  |  |  |  |  |
|                    |                                                     |     | られた。                            |  |  |  |  |  |
|                    | r                                                   |     |                                 |  |  |  |  |  |
| 競合技術の状況            | ・半導体現場における高速 1/0 テ                                  | ・スト | ヽ手法の発表はされていない。                  |  |  |  |  |  |
| と比較                | ・RF リレーの最大周波数は、2GH                                  | zで  | あった。                            |  |  |  |  |  |
|                    | 既存の RF リレーのアイソレーションは、1GHz で-30dB、2GHz で-20dB であった。提 |     |                                 |  |  |  |  |  |
|                    | 案するリレーのアイソレーション                                     | は8  | 3GHz で-30dB であり、8GHz の高周波に対応したリ |  |  |  |  |  |
|                    | レーの製品化が可能になった。                                      |     |                                 |  |  |  |  |  |
|                    |                                                     |     |                                 |  |  |  |  |  |

| 研究成果の「ビーム傾斜方式による傾斜角度 10°で分解能 4nm の達成」の目標は、実験結果として<br>要点 で 3nm の分解能が実現でき達成できた。 3D 画像再構築アルゴリズムの開発もほぼ終了 | 0°<br>ノ、<br>を分 |
|------------------------------------------------------------------------------------------------------|----------------|
| 要点で 3nm の分解能が実現でき達成できた。3D 画像再構築アルゴリズムの開発もほぼ終了                                                        | ノ、<br>を分       |
| 120pm ノードの実 LSL サンプルズの 2D 画像計測に トロパターンの宣さ - 側腔傾斜色の:                                                  | <b>运分</b>      |
| 1301    ノードの夫 LSI リノノルての 3D 回豚計別によりハラーノの向き、側笙傾斜用の2                                                   |                |
| な精度が得られた。                                                                                            |                |
| 既存技術   従来、電子顕微鏡レベルでの 3D 画像再構築の基になる傾斜像の取得は、もっぱら試料(                                                    | 酥              |
| 方法に頼っていた。一部ビームロッキング法が使用されていた。                                                                        |                |
| 既存技術の問題点 既存技術に対する本技術の優位性                                                                             |                |
| 1) 試料傾斜方法 1) 電気的にビームを傾斜と共に対物レンズの軸も同時                                                                 | 寺に             |
| 300mm ウエハのステージを傾斜させる必 傾斜するため、機械的なステージ傾斜に比較して                                                         | 舜時             |
| │ 要がある。ステージの傾斜機構は XY 移動機 │ に傾斜条件が実現可能であり、スループットの短約                                                   | 宿に             |
| 構の下に構成される必要があり、ステージはなる。                                                                              |                |
| │ 機構が複雑になり、重量増大を招く。結果 │ 電気的傾斜方法は、スペースも小さく軽量であり、                                                      | 製              |
| として振動に敏感になり本体の性能劣化に 造コストも 1/2 倍近くとなる。                                                                |                |
| 繋がる。最大の問題はステージの傾斜に伴 機械的な機構が少なく、摩耗など故障が少なく、                                                           | トン             |
| うスループットの劣化である。 テナンス上有利である。                                                                           |                |
| 2)ビームロッキング法 2)ロッキング法に比較して遙かに高分解能が得られ                                                                 | <b>5</b> 。     |
| 対物レンズのレンズ作用で振り戻すた                                                                                    |                |
| め、軸外収差が大きく、歪みも大きい。                                                                                   |                |
| 競合技術の  微細化に伴い、設計値とレジストパターンとのズレが大きくなり、 パターンの高                                                         | Ξ,             |
| 状況と比較  テーパー角度の精密測定の要求が叫ばれ、KLA や Veeco からスキャトロメトリー、CD-                                                | AFM            |
| など新しい 3D 計測手法が開発され始めた。                                                                               |                |
| [1] AMAT 社の SEM                                                                                      |                |
| SEM をベースにロッキング法の変法で 8°-15°迄傾斜している。しかしながら像の                                                           | <b>E</b> み     |
| の再現性の問題から正確な 3D 再構築や鳥瞰図などは困難。                                                                        |                |
| [2] CD-AFM                                                                                           |                |
| AFMの原理を用いている。パターンの高さの測定精度はよいが、探針の太さの問題か                                                              | らパ             |
| ターンの底まで針がとどかずホールなどの測定は 90nm ノードでも測定困難になって                                                            | 13             |
| 65nm ノード以降ではさらに厳しくなる。                                                                                |                |
| [3]キャトロメトリー                                                                                          |                |
| 50-60μm領域の平均値を測定するため、ホール、LER や OPC などローカルなデフェ·                                                       | 7ト             |
| の検出には向いていない。                                                                                         |                |

| [研究テーマ:   | レジスト塗布・現像プロセス開発                         | 5]                       |  |  |  |  |  |  |
|-----------|-----------------------------------------|--------------------------|--|--|--|--|--|--|
| 研究成果の要点   | マスク用スキャン塗布装置を完成させ、更に減圧乾燥に関するシミュレーションを行  |                          |  |  |  |  |  |  |
|           | い、溶剤の揮発に伴う膜厚の変化を検討する事で、膜厚変動の原因が明らかになった。 |                          |  |  |  |  |  |  |
| 既存技術      | レジストを成膜するスピン塗布技                         | 術がある。                    |  |  |  |  |  |  |
| 既存技術の     | D問題点                                    | 既存技術に対する本技術の優位性          |  |  |  |  |  |  |
| 1) マスク基板角 | 部での膜厚異常                                 | 1) スピンを行わないスキャン塗布技術の為、マス |  |  |  |  |  |  |
| 2) マスク基板側 | 面部の汚染                                   | ク基板角部への塗布も可能             |  |  |  |  |  |  |
| 3) プリベーク温 | 度での線幅の不均一性                              | 2) マスク基板側面部にシャッターが設けてあり、 |  |  |  |  |  |  |
|           |                                         | 側面部の汚染を防ぐ                |  |  |  |  |  |  |
|           |                                         | 3) 減圧乾燥を用いる事で残量溶剤が極めて少な  |  |  |  |  |  |  |
|           |                                         | く、プリベークでの溶剤揮発や温度分布が少な    |  |  |  |  |  |  |
|           |                                         | L1                       |  |  |  |  |  |  |
| 競合技術の状況   | マスク基板への塗布では、面内                          | 均一性の確保がきわめて重要となる。スピン技術によ |  |  |  |  |  |  |
| と比較       | る塗布膜の均一性が、面内レンジ                         | シ1%以下に対し、スキャン塗布では約3%である。 |  |  |  |  |  |  |
|           | スキャン塗布での面内均一性悪                          | 化の原因として以下が挙げられる。         |  |  |  |  |  |  |
|           | [1] 板エッジでの厚膜                            |                          |  |  |  |  |  |  |
|           | [2]基板中央での膜厚の揺らぎ                         |                          |  |  |  |  |  |  |
|           | これらの問題に対し、減圧工程                          | での膜形成過程をシミュレーションする事で、膜厚変 |  |  |  |  |  |  |
|           | 動の原因が明らかになってきた。                         |                          |  |  |  |  |  |  |
|           | 一方、マスク基板側面部は、スキ                         | ャン塗布装置による塗布評価において、レジスト汚染 |  |  |  |  |  |  |
|           | がない事を確認できている。                           |                          |  |  |  |  |  |  |

| [研究テーマ:フ  | プラズマ異常放電監視法開発]                 |                                 |  |  |  |  |  |
|-----------|--------------------------------|---------------------------------|--|--|--|--|--|
| 研究成果の要点   | 超音波による異常放電検出技術(<br>ローブ方法を開発した。 | A E 法 ) と、プラズマ変動を電気的に検出する窓型プ    |  |  |  |  |  |
| 既存技術      | 1) R F 反射波の変化を検出 2)            | プラズマインピーダンスの変化を検出 3)プラズマ        |  |  |  |  |  |
|           | 発光の変化を検出                       |                                 |  |  |  |  |  |
| 既存技術の     | D問題点                           | 既存技術に対する本技術の優位性                 |  |  |  |  |  |
| 1)及び 2)微小 | な異常放電の検出が困難である。                | ・異常放電を確実に検出できる。                 |  |  |  |  |  |
| R F 電源と電  | 「極との間にモニタ用のプローブ                | ・常時監視が可能(実時間観測)である。             |  |  |  |  |  |
| を挿入するた    | め、マッチング条件を変えてしま                | ・チャンバ構造が変更不要である。                |  |  |  |  |  |
| う。        |                                | ・発生場所の標定が可能である。                 |  |  |  |  |  |
| 3) 原理的には米 | 亡の波長程度の位置精度を期待で                | ・プラズマ発生方式を選ばない。                 |  |  |  |  |  |
| きるが、実時    | 間観測が難しく、チャンバに大き                |                                 |  |  |  |  |  |
| な改造も必要    | なため、実施上の問題が多い。                 |                                 |  |  |  |  |  |
| 競合技術の状況   | ファブソリューション社の異常放                | <b>牧電に伴う電磁波を検出するビューポートに取り付け</b> |  |  |  |  |  |
| と比較       | 可能な磁界検出型異常放電監視装                | 置が比較対照になる。                      |  |  |  |  |  |
|           | ・放電異常に伴う GHz 帯の電磁波             | な 放射を検出する原理であり、コイルのループ径が大き      |  |  |  |  |  |
|           | いため、現状の量産装置への取                 | り付けは相当な制限がある。装置開発への適用は可能        |  |  |  |  |  |
|           | と思われるが、今後の装置では                 | 、益々小さくなる方向である為、量産装置への困難が        |  |  |  |  |  |
|           | 予想される。                         |                                 |  |  |  |  |  |
|           | 一方で、今回開発した2方式の異                | 常放電監視装置は、                       |  |  |  |  |  |
|           | ・AEセンサー方式、窓型プロー                | ブ方式では、とは異常検出のコンセプトが異なってい        |  |  |  |  |  |
|           | る。AEセンサーは装置に貼り                 | 付けるだけ、また、窓型プローブは既存ののぞき窓を        |  |  |  |  |  |
|           | 利用できることから、装置の制                 | 約がない。また、異常放電の判断も、2検出情報によ        |  |  |  |  |  |
|           | り、更に確度が上がっている。                 |                                 |  |  |  |  |  |
|           |                                |                                 |  |  |  |  |  |

| 研究成果の<br>要点                                                                                                                                                                                                | 低誘電率( r<3.0)、低誘電正接(tan<br>を有する化合物を導入することにより<br>0.6kg/cm:銅箔厚み=20 µ m)。                                                                                                                         | <0.01)を有する平滑な(Ra<0.1µm)絶縁樹脂上に金属配位能力<br>)密着よく導体層を形成できるめっき技術を開発した。(密着強度                                                                                                                                                      |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 既存技術                                                                                                                                                                                                       | 現在、市場で使用されている絶縁<br>また絶縁層の表面を 1-2um 程度荒                                                                                                                                                        | 層は誘電率 r>3.0,tan >0.01 以上と電気特性が悪く、<br>らして導体層との密着性を確保している。                                                                                                                                                                   |  |  |  |
| 既存打                                                                                                                                                                                                        | 支術の問題点                                                                                                                                                                                        | 既存技術に対する本技術の優位性                                                                                                                                                                                                            |  |  |  |
| LCP材料等、日本ゼオン製絶縁材料と同<br>等以上の低誘電率、低誘電正接を有する材料<br>が市販されているが、導体層との密着性を得<br>るために1-2um 程度表面を荒らしている。こ<br>のため、導体パターンを形成する際に配線加<br>工精度が悪く、歩留まりが低下する問題があ<br>る。また、高速信号を伝送する際のロスも大<br>きく、信号立ち上がり時のジッタ揺らぎも大<br>きい問題がある。 |                                                                                                                                                                                               | 本技術は平滑な(Ra<0.1um)絶縁層表面に密着性よく導体層を形成できるため、配線加工精度に優れ、電気特性では高速信号(40GHz)の伝送特性(S21パゥメ-タ-)において従来比(エポ や基板)1/2 以下の減衰率、信号の立ち上がり特性(TDT)も2倍以上早く立ち上がる特性伝送ロスが従来の 1/2 以下と小さく、さらに 10GHz の信号立ち上がり特性も従来比で2倍以上早く立ち上がり、ジッタ揺らぎも非常に小さいという特徴を有する。 |  |  |  |
| 競合技術の<br>状況と比較                                                                                                                                                                                             | 新光電気にてポリイミドに対する<br>Ra>0.5um<br>r=3.3(1GHz),tan =0.013(1GHz<br>密着強度>0.6kgf/cm<br>本研究での表面荒さは<br>Ra<0.1um<br>r=2.7(1GHz),tan =0.09(1GHz)<br>密着強度>0.6kgf/cm<br>と非常に平滑な絶縁層上に密着性<br>また、現在ビルドアップ基板への | 平滑メッキ形成技術が発表されており、その表面荒さは<br>:)<br>:よく配線層を形成することが可能である。<br>:適応性評価中である。                                                                                                                                                     |  |  |  |

| [研究テーマ:液晶輝度ムラ検査装置開発] |                                           |                            |  |  |  |  |  |
|----------------------|-------------------------------------------|----------------------------|--|--|--|--|--|
| 研究成果の要点              | 多眼視光学系のセンサヘッド" 蒲鉾ヘッド "による多角度撮像方式を用いた新コンセプ |                            |  |  |  |  |  |
|                      | トの液晶輝度ムラ検査装置を開発、多種類の輝度ムラの検出に成功している。       |                            |  |  |  |  |  |
| 既存技術                 | エリアカメラによる正面からの一                           | ·画像からムラを検出する手法が主流。         |  |  |  |  |  |
|                      |                                           |                            |  |  |  |  |  |
| 既存技術0                | D問題点                                      | 既存技術に対する本技術の優位性            |  |  |  |  |  |
| 1)正面からの一             | 画像からムラを検出する手法の                            | 1) 複数視角のパネル画像を撮像、それを画像処理す  |  |  |  |  |  |
| 為、特に LCD の           | )場合は視角依存性の問題があり、                          | ることでムラの検出能力が飛躍的に向上。また、     |  |  |  |  |  |
| 正面画像から樹              | 食出されるムラの種類は限定され                           | 視角依存性ムラに対しては圧倒的に優位。        |  |  |  |  |  |
| る。                   |                                           | 2)等倍光学系のため、全ての画素に対して垂直な撮   |  |  |  |  |  |
| 2)縮小光学系のた            | こめ、画像の中心部分と周囲の領                           | 像画像であり、パネル面全面に渡り視角が等しい。    |  |  |  |  |  |
| 域では視角が異              | 異なり、視角に忠実な画像とはな                           | 3)センサヘッドのモジュール化により、50 インチ級 |  |  |  |  |  |
| らない。                 |                                           | 以上の大型パネルに対応可能。             |  |  |  |  |  |
| 3)大型パネルへの            | )対応が困難。                                   |                            |  |  |  |  |  |
| 競合技術の状況              | 競合技術の主な検査方式は以下の                           | D通りである。                    |  |  |  |  |  |
| と比較                  | a)エリアカメラによる正面か                            | らの一画像からムラを検出する手法           |  |  |  |  |  |
|                      | b)特殊光学系を用いた微少領                            | 域の視野角分布をパネル全領域に渡って測定、その結   |  |  |  |  |  |
|                      | 果からムラを検出する手法                              |                            |  |  |  |  |  |
|                      | この検査方式と今回開発した技術                           | を比較する。                     |  |  |  |  |  |
|                      | a)方式は撮像時間が短い利点                            | があるが、上述1)~3)の問題点があり、本技術が   |  |  |  |  |  |
|                      | 検出力で圧倒的に優位である。b                           | )方式は輝度の視野角分布を正確に測定できる利点が   |  |  |  |  |  |
|                      | あるが、撮像時間だけで数十分掛                           | かる。更に、パネルが大きくなるほど長時間の撮像と   |  |  |  |  |  |
|                      | なる。従って、インライン用途には全く使えない。また、大型パネルへの適用も難しい。  |                            |  |  |  |  |  |
|                      | このような状況から、数種の検査                           | 装置が市場に投入されているが、パネルメーカーの現   |  |  |  |  |  |
|                      | 場の検査ニーズを満足させる輝度                           | ムラ検査装置は存在していない。            |  |  |  |  |  |
|                      |                                           |                            |  |  |  |  |  |

| [研究テーマ:膨  | [厚ムラ検査装置開発]                                        |                             |  |  |  |  |  |
|-----------|----------------------------------------------------|-----------------------------|--|--|--|--|--|
| 研究成果の要点   | G 5 サイズ(1100mm×1300mm)のガラス基板上の全面の膜厚を 54 秒で測定する技術を確 |                             |  |  |  |  |  |
|           | 立した。                                               |                             |  |  |  |  |  |
| 既存技術      | 膜厚の均一性を検査する装置とし                                    | →ては、1)光学式ポイント膜厚計方式 2) 画像による |  |  |  |  |  |
|           | ムラ検査方式がある                                          |                             |  |  |  |  |  |
| 既存技術の     | D問題点                                               | 既存技術に対する本技術の優位性             |  |  |  |  |  |
| 1)学式ポイント服 | 莫厚計の場合、膜厚は測定できる                                    | 1)全面にわたり膜厚が測定できる            |  |  |  |  |  |
| がインラインで   | で測定するためには測定ポイント                                    | 2)測定時間が短いためインライン検査が可能である    |  |  |  |  |  |
| が数箇所に限定   | 宦されてしまい、十分な均一性の                                    | 3)1回のスキャンで測定できるため、搬送系の上で検   |  |  |  |  |  |
| 評価ができない   | ۱°                                                 | 査ができ、専用のステーションが必要ない         |  |  |  |  |  |
| 2)画像によるム  | ラ検査方式の場合、全面のムラは                                    |                             |  |  |  |  |  |
| 評価できるが、   | 膜厚は測定できない。                                         |                             |  |  |  |  |  |
|           |                                                    |                             |  |  |  |  |  |
| 競合技術の状況   | ポイント式膜厚計と画像ムラ樹                                     | 食査を組み合わせたインライン検査製品が競合対象と    |  |  |  |  |  |
| と比較       | なる。現在の性能は以下の通りで                                    | *ある。<br>                    |  |  |  |  |  |
|           | ポイント式膜厚計                                           | 画像ムラ検査                      |  |  |  |  |  |
|           | ・測定ポイント 5ポイント                                      | ・測定ビッチ 0.5mm                |  |  |  |  |  |
|           | ・測定タクト 60秒                                         | ・測定タクト 60秒                  |  |  |  |  |  |
|           | ・測定内容   膜厚                                         |                             |  |  |  |  |  |
|           | 一方で、今回開発した膜厚ム                                      | 、ラ検査装置の性能は、                 |  |  |  |  |  |
|           | ・測定ビッチ 3.5mm                                       | ・測定ポイント 29000 ポイント          |  |  |  |  |  |
|           |                                                    |                             |  |  |  |  |  |
|           | と、測定ヒッナは画像ムフ検省                                     | よりは低いか、限厚か測定でさるホイント数ははるか    |  |  |  |  |  |
|           | に上回っている。これにより、従                                    | 米力式では実現でさなかった限厚分布が得られ、具の    |  |  |  |  |  |
|           | 脵厚ムフのインフイン 検査を可能                                   | こと (いる。                     |  |  |  |  |  |
| 1         |                                                    |                             |  |  |  |  |  |

| <br> 研究テーマ:微                                   | ෭細加工・計測技術開発]             |                               |  |  |  |  |
|------------------------------------------------|--------------------------|-------------------------------|--|--|--|--|
| 研究成果の要点                                        | 本グループではX線マスク、拡散          | 防止窒化タングステン薄膜、電子線微細加工、レチク      |  |  |  |  |
|                                                | ルフリー露光技術など、幾つかの          | テーマに取り組んだが、最も力を傾注し又目覚ましい      |  |  |  |  |
|                                                | 成果が得られたものは、レチクル          | <b>╭フリ-露光技術開発である。</b>         |  |  |  |  |
| 既存技術                                           | プリント配線板、集積回路等の電          | 子回路基盤を作成する場合最も一般的な方法は、マス      |  |  |  |  |
|                                                | ク ( レチクル ) と呼ばれる " 原板    | "を作成し、予め感光材料を塗布した電子回路基盤上      |  |  |  |  |
|                                                | にそのパターンを転写・コピーす          | ることによって回路形成をおこなう。             |  |  |  |  |
| 既存技術の                                          | D問題点                     | 既存技術に対する本技術の優位性               |  |  |  |  |
| 1)先ず第1にマス                                      | くク(レチクル)を作成するため、         | 1)マスク(レチクル)を使用せずに、設計データか      |  |  |  |  |
| マスクの製造コ                                        | コスト並びに製造時間を要する。          | らそのままオンラインで電子回路基盤上にパター        |  |  |  |  |
| 一般的には、「                                        | マスクの価格は、安い物で、@約          | ン形成を行うため、マスク製造時間とコストを無        |  |  |  |  |
| 10万円、期間                                        | 間は、一週間以上である。             | 視することができる。                    |  |  |  |  |
| 2)第2に通常回路                                      | 各設計・製作を行う場合は、試作          | 2)本技術における " 原板 " はLCD(液晶パネル)  |  |  |  |  |
| 時に修正・変更                                        | <b>퇃を伴うため、その回数分だけ、</b>   | であり、LCD上に任意回路パターンを形成し、        |  |  |  |  |
| 上記コストと時                                        | 間を要する。                   | 転写する為、あらゆるパターンに対応できる。         |  |  |  |  |
| 3) 第3に上記マ                                      | スクの製造装置は高額であるた           | 3)本技術を応用した装置構成は、目的とする回路パ      |  |  |  |  |
| め、大企業に犯                                        | 虫占されており、大学・公設試な          | ターン寸法により、" 近接露光 "、" 等倍投影露光 "、 |  |  |  |  |
| どの研究機関た                                        | が回路設計・製作を手軽に実施す          | " 縮小投影露光 " と、種々の方式が考えられるが、    |  |  |  |  |
| ることは困難て                                        | である。                     | 何れの方式も既存方式に較べ、装置価格は構成に        |  |  |  |  |
| 4)第4に一般に、                                      | マスク(レチクル)はガラスにク          | よるが数分の1である。                   |  |  |  |  |
| ロムをコート                                         | し、感光性レジストを塗布して作          | 4)左記に述べた様な材料を必要としないため、地球      |  |  |  |  |
| 成するが、少量                                        | 量・多品種の電子回路を製作する          | 環境保全の面から考えて、きわめて有益と考えら        |  |  |  |  |
| 場合には、これ                                        | <b>れらの材料が無駄になる場合が多</b>   | れる。                           |  |  |  |  |
| <i>د</i> ا،                                    | <b>F</b>                 |                               |  |  |  |  |
| 競合技術の状況                                        | 競合技術としては、 左記に述           | べた既存技術、最近開発された(レーザービーム直接)     |  |  |  |  |
| と比較                                            | 露光装置が考えられるが、既存技          | 術に比較した特徴は上記のような状況である。量産適      |  |  |  |  |
|                                                | 用を考えた場合には、既存技術の          | 法が、コピー方式であるため、数十倍露光速度が速い。     |  |  |  |  |
|                                                | レーザービーム直接露光方式と           | :比較した場合、やはり露光速度の点で、約10分の一     |  |  |  |  |
|                                                | であるが、装置コストの面で、装          | 置構成にもよるが、本方式は、数分の一である。        |  |  |  |  |
|                                                | 寸法と、目的、予算により、上記のように、"近接露 |                               |  |  |  |  |
| 光 "、" 等倍投影露光 "、" 縮小投影露光 "と同一原理の種々の方式を選択できる点にある |                          |                               |  |  |  |  |
|                                                | 因みに近接方式の加工寸法は数十          | - ミクロン、等倍投影方式の加工寸法は約10ミクロ     |  |  |  |  |
|                                                | ン、縮小投影露光方式の加工寸法          | は1-2ミクロンである。                  |  |  |  |  |
|                                                |                          |                               |  |  |  |  |

## (2)パテントマップ

超精密高速ステージ開発



Votes

KPAT001A01「超音波モータを使用したXYステージ姿勢制御」 KPAT036A14「ビーム照射装置」、 KPAT066A21「液晶パネル用露光装置」 KPAT067A22「露光装置」 KPAT002A02「高速駆動型の非共振型超音波モータ」

KPAT003A03「非共振型超音波モータを使用した新型電子線描画装置」
KPAT011A04「圧電アクチュエータ及びその製造方法」
KPAT012A05(KPAT016A08)「圧電アクチュエータ」
KPAT013A06「圧電素子及びその使用方法」
KPAT019A09「送り装置」、 KPAT031A12「アクチュエータ」
KPAT054A15「粗微動共用送り装置」、 KPAT058A17「圧電アクチュエータ」
KPAT064A19「圧電アクチュエータ及び駆動装置(形状規定)」
KPAT069A23「送り機構の駆動方式」

#### 3次元形状計測手法開発



KPAT037B01「電子装置用簡易型恒温装置及びその制御方法」 KPAT047B02「走査電子顕微鏡装置」

プローバ高周波計測技術開発



KPAT018C02「シート型プローブカード」 KPAT042C03「高速入出力装置を備えた半導体集積回路装置の試験方法 及び試験装置」

#### プラズマ異常放電監視法開発



 KPAT007D01「プラズマ処理装置の異常放電検出方法及びその装置」
 KPAT030D04「静電チャックへの AE センサー配置」
 KPAT034D05「プラズマ装置における異常放電発生に伴って発生する超音波の 抽出方法」
 KPAT038D06「超音波(AE)センサーの接触状態の確認機能を備えた超音波の検出によ るプラズマ異常放電監視装置」

KPAT043D07「窓型プロープ、プラズマ監視装置およびプラズマ処理装置」

レジスト塗布・現像プロセス開発



KPAT008E01「窒素注入 C60 フラーレン薄膜及びその作成方法」 -

KPAT041E02「高分子溶液膜の塗布・乾燥方法」

### 次世代実装対応めっき技術研究開発



-KPAT009F01「LSI 多層銅配線構造」 KPAT020F03「配線基板及びその製造方法」 KPAT023F05「半導体集積回路装置及びその製造方法」

KPAT021F04「**ポリイミド上への無電解めっき方法」** KPAT024F06「**無電解めっきの方法」** KPAT040F09「プリント基板の製造方法」

### 液晶輝度ムラ検査装置開発・膜厚ムラ検査装置開発



KPAT004G01「構造物の変位ひずみ応力を算出する方法」
 KPAT005G02「輝度分布検査装置」
 KPAT006G03「放射輝度角度分布評価装置」
 KPAT033G05「LCD ムラ欠陥識別処理とその装置」
 KPAT033G05「LCD ムラ欠陥識別処理とその装置」
 KPAT044G07「多角画像取得方法、その装置及びそのプログラム」
 KPAT050G09「液晶パネルの表示欠陥検出方法及び表示欠陥検査装置」
 KPAT056G13「表面表示装置用検査装置及び表面表示装置の検査方法」

KPAT039G06「センサヘッド、これを具備した輝度
 分布測定装置及び表示むら検査評価装置」
 KPAT055G12「レンズアレイ装置、撮像装置及び
 輝度分布測定装置」



KPAT052G10「膜厚取得方法(視野角)」
KPAT053G11「膜厚取得方法(色度)」

微細加工・計測技術 (レチクルフリー露光技術)開発



KPAT010H01「メンプレンマスク、その製造方法及びマスクパターンの位置精度保持方法」
 KPAT045H02「LCD上に形成されたパターンを転写する方法」
 KPAT046H03「偏向光源とLCDの組合せによる露光装置」
 KPAT048H05「化合物薄膜成膜装置」
 KPAT060H06「光電制御レチクル及びレチクルフリー露光装置」
 KPAT060H06「光電制御レチクル及びレチクルフリー露光装置」
 KPAT063H07「パターン転写方法」、KPAT068H08「パターンズレ検出方法及び露光装置」

**Pd** 128

(3)技術マップ

ステージ位置決め精度のロードマップ



## パターン形状計測のロードマップ

| AFMロートマツノによる「法・形状観祭 |         |                                          |          |       |      | SEAJ ロードマップ委員会2001年 |      |                                       |            |                                       |      |
|---------------------|---------|------------------------------------------|----------|-------|------|---------------------|------|---------------------------------------|------------|---------------------------------------|------|
| 年                   |         | 2001                                     | 2002     | 2003  | 2004 | 2005                | 2006 | 2007                                  | 2010       | 2013                                  | 2016 |
| テクノロジーノー            |         | 130                                      |          |       | 90   |                     |      | 65                                    | 45         | 32                                    | 22   |
| DRAM 1/2ビッ          | チ       | 130                                      | 115      | 100   | 90   | 80                  | 70   | 65                                    | 45         | 32                                    | 22   |
| MPUゲート長             |         | 65                                       | 53       | 45    | 37   | 32                  | 28   | 25                                    | 18         | 13                                    | 9    |
| 寸法計測要求精             | 度       | 1.3                                      | 1.1      | 0.9   | 0.75 | 0.65                | 0.6  | 0.5                                   | 0.36       | 0.25                                  | 0.2  |
| 微細形状観察 XY分解能        | P/T=0.1 |                                          |          |       |      |                     |      |                                       |            |                                       |      |
|                     | 研究      |                                          | 1.0      |       |      |                     |      | -                                     |            |                                       |      |
|                     | 開発      | 1.5                                      |          | 1.0   | 0    | 0.7                 | -    |                                       |            | 0.35                                  |      |
|                     | 実用化     |                                          | 1 []     | 1.5   |      | 1.0                 |      | 0.7                                   | 0.5        |                                       | 0.35 |
| 微細形状観察 Z分解能 F       | P/T=0.1 |                                          |          |       |      |                     |      | ι,                                    |            |                                       |      |
|                     | 研究      |                                          | 1.0      |       |      | 11                  |      |                                       |            | -                                     | -    |
|                     | 開発      |                                          |          | 1.0   |      | 0.7                 |      | 1                                     |            | 0.35                                  |      |
|                     | 実用化     |                                          | 1 0      |       |      | 1.0                 |      | 0.7                                   | 0.5        |                                       | 0.35 |
| 微細形状観察 最大検出:        | 角度Θ度    |                                          |          |       |      | _                   |      | L L                                   |            |                                       |      |
| この傾斜角度測定            | 5# 20   |                                          | 1        |       | _    | 87                  |      | 1                                     |            |                                       |      |
| をT-MOLで狙う           | 開発      | 85                                       |          |       |      |                     | 87   | 1                                     |            |                                       |      |
|                     | 実用化     |                                          | 85       |       |      | $\checkmark$        |      | 87                                    |            |                                       |      |
| ホール計測要求精度           |         |                                          | 11 m m m |       | -    |                     |      | 2                                     |            |                                       |      |
| ホール測定分解能 P/T=       | 0.2     |                                          | 2.0      |       |      | 1.4                 |      |                                       | 1.0        | 0.7                                   |      |
| このホールオ法測定を          | 研究      | 1                                        |          | <20   |      |                     |      |                                       |            |                                       |      |
| CD-SEMT THE         | 開発      | < 50                                     |          |       | <20  | 11                  |      |                                       |            | · · · · · · · · · · · · · · · · · · · |      |
| ob orm cary         | 実用化     |                                          | l i      |       |      | <20                 |      | 1                                     |            | 1                                     |      |
| ホール底部計測要求精度         | Ē       |                                          |          |       |      |                     |      |                                       |            |                                       |      |
| ホール測定分解能 P/T=       | 0.2     |                                          | 2.0      |       |      | 1.4                 |      |                                       | 1.0        | 0.7                                   |      |
| このホール寸法測定を          | 21 20   |                                          | 0        |       | 0.7  |                     |      | 0.5                                   | 0.35       |                                       |      |
| CD-SEMで狙う           | 開発      |                                          |          | 1.0   |      | 0.7                 |      | [ ]                                   |            | 0.35                                  |      |
|                     | 実用化     |                                          |          |       | 1.0  |                     | 0.7  |                                       | Į          |                                       | 0.35 |
| 測定再現性要求精度           |         | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |          | 1.000 | -    |                     |      |                                       | - 14 F - 1 |                                       | -    |
| 孤立ライン 3 o、P/T=0.2   | 2       | 1.8                                      | 1.6      | 1.4   | 1.3  | 1.2                 |      |                                       | 0.8        | 0.6                                   |      |
|                     | 研究      |                                          | 2        |       | ļ    | ~1.0                |      | ĮĮ                                    | 0.8        |                                       |      |
|                     | 開発      | 8                                        |          | 2     |      |                     | ~1.0 | i i i i i i i i i i i i i i i i i i i |            |                                       |      |
|                     | 実用化     | 8                                        | 1        |       | 2    |                     |      | ~1.0                                  | 10         | 0.8                                   | 1    |

#### ....

: 解決策見つからず -



I/Oインターフェース転送速度のロードマップ

図 I/ O イン タフェー ス の 転 送 速 度



ディジタル 信 号 伝 送 速 度 が 1 6 6 Mビット/ 秒 か ら2.5Gビット/ 秒 に 約 10倍 以 上 の 高 速 に なる。



半 導 体 製 造 現 場 で、2.5 G ビット/ 秒 に 対 応 した L S I テ ス トを しな け れ ば な ら な く な る 。