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1 FEOHE

Human skin color is a powerful fundamental cue that can be used in particular, at an early stage, for the
important applications of face and hand detection in color images or video sequences, and ultimately, for
meaningful human-machine interactions [1]. One important first issue that we addressed during both Phase I
and Phase II of the HOIP project is the selection of an efficient chrominance (color} space, because the
performance of face and hand detection depends critically on the performance of the initial steps of skin pixel
detection and of image segmentation, which in turn ultimately depends on the chrominance space that is used
[2], [3]. Secondly, a suitable image segmentation model is applied depending on the selection of the color
space [2]. The extraction of binary global facial feature information is then performed by use of fully
translation-, scale- and in-plane rotation-invariant Fourier-Mellin moments, in order to ensure invariant face
detection [4]. For subsequent binary face/non-face classification in complex scenes, we applied two different
statistical learning techniques: a multiplayer perceptron Neural Network (NN) [4], or alternately, Support
Vector Machines (SVM), that may [5], [6] or may not [7] rely on color as a first cue. Finally, hand posture
recognition of the Japanese Sign Language (JSL) is performed by use of the Phase-Only correlation Filter
(POF) [1], that yields an efficient discrimination both between different hand postures and between hand
postures and scene background areas that have incorrectly been detected as skin.

This report presents, for Phase I of the HOIP project, a detailed overview and experimental results of the
skin color analysis and of the face detection and hand posture recognition system based on skin color (for
convenience, later results that were obtained during Phase II are included in this section). The part of the
report devoted to Phase II involves the integration of the system based on skin color into a more global, real-
time system that is capable to simultancously detect or track multiple faces as well as recognize hand postures

of the JSL in color video sequences.

2 HEDEE

The analysis of the distribution of human skin color for a large set of two-dimensional (2-D) chrominance
spaces derived from the standard three-dimensional (3-D) 24-bit RGB color space aims to select the most
efficient chrominance space(s) for skin pixel detection and skin color-based image segmentation, in terms of a
sufficient number of representative criteria. Subsequently, by applying such spaces to the analysis of color
images or of video sequences, our goal is to implement a robust face detection and hand posture recognition
system based on skin color, that can be the front end of more complex systems capable of various face
recognition tasks, face tracking, dynamic gesture recognition, and ultimately of meaningful human-machine
interactions. The two main fields of applications of such interactions, which have a significant impact on
society and on its activities, are 1) welfare improvement, and 2) the security of people and of information
systems. '

3 FENZA - Skin Chrominance Analysis

Skin pixel detection, or skin color-based image segmentation is relatively robust to changes in
illumination, in viewpoint, in scale, to shading, partial occlusions and to cluttered backgrounds as compared
to the segmentation of gray-level images. Robusiness of segmentation is generally achieved by separating the

2-D chrominance from the luminance channel in the original RGB color images, and then by using only the



chrominance for segmentation. This separation implies a dimensionality reduction by a suitable, linear or non-
linear transformation from the 3-D RGB color space into a 2-D chrominance space. The selection of an
efficient chrominance space motivates an analysis of human skin color for different chrominance spaces. For
a given set of skin sample images or of sample pixels that is collected for calibration before thresholding and
segmentation of test images, the space that is selected determines the compactness and the shape of the skin
chrominance distribution, which in turn determines the complexity of the skin chrominance model that is
required in order to obtain a high quality of segmentation. The skin chrominance distribution also depends on
the various skin groups that are considered {Asians, Caucasians, dark skin group), the illumination conditions
under which the color images were recorded, and on the camera system that is used to record the images.
Finally, an important criterion that ultimately limits the quality of skin pixel detection and of image
segmentation is the degree of overlap, or of discrimination, between the skin distribution and a distribution of
“non-skin” pixels in a given chrominance space, which depends to some extent on the number of skin and
non-skin pixels that are collected for calibration.

In this sub-section, we perform an in-depth comparative analysis of the distribution of human skin for a
large set of 25 different color spaces (41 chrominance spaces), for facial skin images recorded with two
different camera systems, and in terms of seven different criteria. The intrinsic geomeirical properties of
each space are also briefly discussed. The color spaces considered here that result from a linear
transformation from the RGB space are the I;I,1; (Ohta’s optimized color features [8]), hihohs (Wesolkowski’s
color space [9]), YCb,Cr; (using the CIE standard illuminant C) and YChbyCry (using the CIE standard
illuminant D65) [10] [11], YES (a standard space developed by the Xerox company), YIQ and YUV spaces.
The color spaces that result from a non-linear transformation form a second group, that can be divided mto 4
sub-groups: the normalized color spaces (r-g-b [12] [13], CIE-xyz [12] [13] for both standard C and D65
illuminants, and TSL [14]), the perceptually plausible color spaces (CIE-DSH [12], HSV and HSL [15]), the
perceptually uniform color spaces (CIE-L*u*v*[12], CIE-L*a*b*[12], and Farnsworth’s F-uv space [12] [16],
for both standard C and D65 illuminants), and other color spaces (C,C»Cy, 11113, and 1;°1:°15° proposed as color
invariants and used for viewpoint-invariant image retrieval and for color-based object recognition by
Smeulders and Gevers [17] [18], r.g and rg.b log-opponent space applied to color image indexing by Berens
and Finlayson [19], a’-b* space applied to the extraction of skin color areas in facial images by Kawato and
Ohya [20], mod-rgb space proposed by Tominaga [21], P,-P, space used for the construction of the Fourier
spectrum of the chromaticity by Vertan et al[22], and (R/G=r/g, R/B=1/b, G/B=g/b) and Yuv spaces). The
conversions from the RGB space for both groups are shown in Tables 1-5 (all Figures and Tables are located
at the end of the report). These Tables also show the boundaries of each space, as well as the dimensions used
to calculate the discrete skin chrominance histogram for each space. For all chrominance spéces_ considered in
this paper, the histogram dimensions are selected such that the histogram resolution is the same for all spaces,
in order to ensure a valid comparative study.

Two separate sets of sample images used for the skin chrominance analysis are recorded with an
inexpensive SGI camera, and with a high-quality SONY DXC-9000 camera system respectively. The seven
criteria used for the analysis for each space are: 1) the robustness of the skin chrominance distribution with
respect to the intrinsic variability of skin color (to three different skin groups), 2) its compactness, 3) its shape,
4) the degree of discrimination (or the overlap) between the skin and non-skin distributions, 5) the robustness
(or “portability”) of the skin distribution to a change of camera system, 6) the relative robustness of the skin
distribution to changes in illumination conditions, and finally, 7) the computational cost of the transformation
from the 24-bit RGB (NTSC) space into a given chrominance space.

3.1 Parameters used for the Skin Chrominance Analysis

We first define four different parameters that we use to perform a quantitative analysis of the skin
chrominance. '

1) The compactness of the skin distribution can be calculated as the area of the distribution A, relative to the

area of the gamut of all the possible colors ina given space Ag:
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Cs= As/Ag= (Nb)s/(Nb)g (D
Where Nb is the number of bins in the discrete histograms, and where S and G refer to skin and fo the gamut
respectively.
2) The Kullback-Leibler Divergence [3] (KLD) is selected to estimate the goodness of fit of the skin
chrominance distribution to a simple, single elliptical Gaussian. It is defined in the discrete case as:

KLD = Z Z S In( Z Z @ In (G'”

j=1 i=1 j=1 i=1

@

Where S'y; is considered as the “true” distribution (the normalized skin histogram observed in a discrete
chrominance space with M x N bins) and G’ as the “estimated” or “model” distribution (the normalized ideal
Gaussian histogram calculated from the mean vector and from the covariance matrix of the skin distribution
in the same discrete space}). The KLD has the following properties: i) KLD = 0 and ii) if KLD=0, then
$'j = G';. Hence, the lower the value of the KLD, the higher the goodness of fit to the single Gaussian
model.

3) The Normalized Histogram Intersection (HIN) is a measure of the overlap between two different

distributions, such as the skin and the non-skin distributions. In the discrete case, it is defined as:
N M
HIN = z z mln(Sg NSI_])
f 3)
N
Where NSy =NS;/ z NSjj is the normalized non-skin histogram calculated. in the same discrete

AiE
chrominance space as S’ij, with M x N bins. The lower the value of the HIN, the higher the degree of
discrimination between the two distributions.

4) Finally, the global shift S of a distribution can be calculated as:
S= V(mxl - mxz)2 + (my; - n‘iyg)2 @)

Where Mx = (M1, Mx2) and My = (My|, My2) are the mean vectors for the skin distributions in a given

chrominance space (x, y) for cameras 1 and 2.

4 §E8

4.1 Experimental Set-up

Facial images of Asian and Caucasian subjects, and of subjects with dark skin color, were recorded under
slowly varying illumination conditions (using halogen lamps at 3,200 degrees Kelvin) in the “percept-room™
of the HOIP laboratory (under controlled, semi-constrained scene conditions) with both the SONY and the
SGI camera systems (using a white balance for both cameras). From the images obtained with the SONY
camera, 65, 51 and 10 skin sample images of Asian, Caucasian, and dark skin-colored subjects respectively,
were manually selected, yielding a total of 2.115x10E+03, 1.630x10E+05, and 2.580x10E+04 skin pixels for
each tespective skin group. When using the SGI camera, 111 skin sample images of both Asian and Caucasian
subjects were manually selected, for a total of 1.515x10E+05 skin pixels. Also, 80 “non-skin™ images were
selected from various sources, mainly from the World Wide Web, producing a total of 2.6606x10E+06 non-
skin pixels. For each image, the 24-bit RGB values are scaled between 0.0 and 1.0. Achromatic pixels
(including black) were assigned suitable values adapted to the particular color space that is considered, as
showﬁ in Tables 1-5. For each space yielding negative chrominance values, a shift was performed so that all
values are positive, without any influence on the results of the chrominance analysis. Generally, the discrete,
cumulative skin and non-skin histograms are calculated over an entire space, except for the CIE-L*u*v and
CIE-L*a*b* spaces, whose boundaries are curved, and for the log-opponent and RiRaR3 spaces, where the
range (hence the histogram dimensions) is determined empirically, by observing the skin and non-skin
distributions (we used a range of [—.1.0; 2.0] along both the x and y axes for the log-opponent space, and of
[0.0;2.0] for the R;1R2oR3 space). The resolution of the skin and non-skin histograms is 0.01 unit in both the x
and y directions for all spaces, except for the CIE-L*u*v* and CIE-L*a*b* spaces, where the resolution is 1.0

unit, thus yielding matrices of dimensions 100 x 100 bins for most spaces, as can be seen in Tables 1-5.



Table 1. Linear transformations from RGB color space

COLOR SPACE HISTOGRAM
SPACE CONVERSION EQUATIONS BOUNDARIES | No OF BINS
l{lalg iLy i 13 1!3 13 iiRi| LED; 1.0],
E|=| 1 1 |6, er1.0:1.0| 200 x200
‘B 112 1 12 VB e 11.0:1.0]
hehahe iy (1 -10W R h; [-1.0:1.0],
123 Iy |=l0 1G] i=1,2,3 | 200 x200
I"- h3.l I- —1 G ]. -'I I'- B -'I h1+h3+l'[3 = 0
Y = (0. 7989R+0 5866G+0. 11458 Cby= 172
1| = s
¥Cb, Gr, Ch, - 0.8855B-0.2989R 0 5866G 100 x 100
1.771 |Ce1| = 1/2
Cr, - 0.7011R-0.5866G-0.1145B
1.400%
Y = 0.2126R+0.7152G+0.072B byl < 172
n|= 112,
[fCbaCry o, = 09279B02196R0.7152G - 100 x 100
- 1.8556 |Cea| < 172
Cry = 0.7874R-0.715°G-0.072°B
1.5748
ves ||E|= ﬁﬂmmﬂwmﬂ |Gl " | 100 x 100
'8 ‘poso 02w o5l B (8|12
iY i 0299 028701145 R |I|£ﬁjgﬁ,
via | I |=|059s02750321] 6 | 120 x 120
Q! lgorzos30311/ B! |Q|=0523
(Y 10299 0%701141/R| (7|2 0436,
vuv || u|=|01470989043 || G | 125 x 125
| ‘v! los15 05150100/ B! | | V]<0.615
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Table 2. Non-linear conversions from RGB color space into normalized color spaces

COLOR
SPACE

CONVERSION EQUATIONS

EPACE
BOUNDARIES

HISTOGRAM
MO OF BINS

rgb

g=—
R+G+B’
If R=G=B=0,
set r=g=b=173

__R
R+G+B’

_ B
b"‘R+G+B

(r.ge. b &[0, 1.0]
r+g+b=1

100 x 100

CIE-xyz
(C IIL)

CIE-xyz
(D65 IL.)

0.174
0.587
0.066

. 0.607
| 0.299
. 0.000

P X
Y |-
L 7

TR
|c]
Iy

0.201
0.114
1.117

i 0430574
| 0222015
L D.oeDIR3

0341530
0706655
0128533

P X
v]-

0178325 iR i
0071330 || G |
0039180 '\ B/

X+Y+Z4' X+Y+Z'
7z If X=Y=7Z=0,

~XiY+Z

set x=y=2=1/3

x v.2)E [0 1.0

x+y+z=1

100 x 100

'T.8L)e[0; 1.0

g' =(g-1/3), r=(r-1/3)

1
x a.rctau|
1
i mtan]

,g >0 and »'=0
, g8 <0 and r'=0

H4
o
g >0and r=0
, g <0and r=0

,g=0and r>0
,g' =0and r'<«0

TSL 100 x 100

4

- (3

L= 0.299R + 0.587G + 0.114B

172
2 +g°q




Table 3. Non-linear conversions from RGB color space into perceptually plausible color spaces

HISTOGRAM

coLon CONVERSION EQUATIONS

SPACE
B QUNDARIES

No OF BINS

SPACE

§= 1 3[min(R, G, B)]
~ " [R+G+B)
" IR[IR-GHR-B]] |

1

ix

ICIE-DSH

_1
D=3(R+G+B) (DSH)E[0: 10]

1

—Arceos - — — - +
[IR-G*{R-BG-B] [ 2

+
H:{ld 1 © 1R[IR-G HR-B]]

— - = Aee

2 Ix

m N . A N N 1
|R-G1%{R-B| G-B] |**'

if R=G=B, §=0 set H=0. K R=G=B=0, set §=H=0

100 x 100

max (R,G,B)-min(R,G.B)

H ={ > 1ax(RG.B) min(R G B)

4 - .
max(R,C.B)-min(R.G B)

5= max (R.C.B)
V=max(R G B

G-B . R=max(R,G B)
B-R . G=max(R G B)

R-G B-max (R.C.B|

HQy | Normalize bysetting H =H/G IFH <0, sot H=H+ 1
max (RG.B) -min RG.B o (R.G.B)=0

If max(R,G B)=min{R G B}, then R=G=B, 5=0, set H=0
If max({R G B)=0 then R=G=B=, set 5=H=0

kH,S,WE [0;1.0]

100 x 100

H i{ same as for HSV

max (R,G.B) - min (R.G,B)
_ S max(R.G,B) + min (RG.B)

HsL |5 max (R.G.B) - min (R.C.B)

I(H,S,L)E 0:1.0]

L =«

max (R,G,B) +min (R.G.B)
"

L=

Jir)

2 - [max(R,G B) +min(RG B)]"

Eame limiting conditions as for HEV +if B =G=E=1, =set 5 =H=0

0.5
100 x 100
L >05
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Table 4, Non-linear conversions from RGB color space into perceptually uniform color spaces

COLOR SPAGE HISTOGRAM
SPACE CONVERSION EQUATIONS BOUNDARIES | No OF BINS
F Y h1s Y
116 | + 16 ¥ > D 008856
9[13.3|"JL"| % = 0.008856
w=13LF (uw-w, ], v =13L%(v-v_] 200 x 200
e 24X vil=__ 9Y (skin)
X +13Y +3Z ' X+ 13Y + 3Z
S 4 “ 5%,
ICIE-L*u*vwt| "~ X +13Y,+3Z," ' "X, + 15Y, + 3Z, or
= {Xu, Yu, Zv) are the CIE-(X, Y, Z) components
ofarefe:rencei]lunﬁnant e.g. the C or D A3 illuminants
I 0982 IX 100.8a01 370 x 370
cil. . h’ =| 1000 ) D65ill.: |y, |={ 1000 | _
Iz '. 1.183 'z I 11n=g! {non-skin)
0= L* <100
Achromatic point : u* = v* =0, Boundaries
cnurved
in u*-v* space
L* ={ same as in CIE -L#u* v* space
~ 500 [ﬂ -l } 200 x 200
o xr s (skin
b*= 200 [ﬂ' X | -f|'l'|},
1 Xﬂ i 1 Yﬂ ]
plE-L*a*b* {3 , t =0.008856 or
7.787 + 11€ t > 0.008856
- 370 x 370
0=L* <100 .
{XDI YD‘ Zlu:l — l:an Yn, Z“} Boundaries (nﬂn‘Skln}
curvd
in a*-b* space
U —2X V=Y, W= M
3 ' z u; & [0:4.0]
U 4% 4
F-ur [&=
U+V+W X+15Y+3Z 25412943 | o = [0:0.4] 100 x 100
v v ___ &Y _ 6y
TTUIV+W X+19Y+3Z 0=+ 10943




Table 5. Non-linear conversions from RGB color space into other color spaces

COLOR : SPACE HISTOGRAM
SPACE CONVERSION EGUATIONS BOUNDARIES | No OF BINS
C =Zarctan( Ko,
[ =2'—ard.an]{‘#)|, C. = - 1.0
C1G2C3 ’; it 1S L0100 x 100
¢, =farcan| B ] i=1,2,3
If R=G=B, C, = 1/2.
If R=G=B=0, st ;=0
- [R-G|
"7 [R-G[+|R-B|+[C - B]
1 R LE P; 1/2]
4ol | 7 [R-G[+[R-B[+[C - B i=1,2,3 | 100 x100
Iy = G- B| L+bh+lz=1
|[R - G[+|R-B|+|G - B|
If R=G=B orr R=G=B=0,set ], =173
» (R-G)?
1'= =
(R-G)*+(R-B)*+ (G-B)*| ' € o; 2/3]
(R-B)”
Fql'ol'g |12 = . | i-1.2 100 x 100
1723 (R.G)2+(RB?2+(GBE| =123
" |:G B] Il|+13|+13I=1
3= 5 5
(R-G)Z+ (R-B)2+ (G-B)>
If R=G=B or R=G=B=0, set I' =173
rg=InR}) -InR - In¢ =R'-¢" .
Ln-Chroma Gs r.g €]+
r g, rg_b|rg b=In/RG|-mRinCG_2mB : 300 x 300"
. B2 irg b &= ] _004-00]
—R' +G'_ "B
' ' ‘e [0; 1.4]
a'-b g b = 3 a ’ .
a—rs+8 —Bg 100 x 100
z 2 b € [0; 5
Let | = 4 R% G+ 2 , then _
Jo_r=rA m_g=cn m_b=pa|mrE D:1.0]
IfR=G=B=0, set m_r—m_g=m_h=y373| M0 € [0;1.0]
P, = 1 _G-R _
P4P +2 R+ G+ B [Py = 1742
172 P, = 1 2B-R-G 150 x 150
{6 R+G+B _1HE =P, = 2/E
If R=G=RB=0, set P1=P>=0
R =GR, Ro=B/R, Rs=B/IG | Ry = [0; =],
-
B1RoR3 [ v R_G-B-0, set Ri=R.=Rs=0 i=1,23 200 x 200
_ U _ -0.147R-0.289G+0.436B
U ¥ T 0o99R+0.587GH0.114B 100 x_1(10
_0.583r-0.725g +0.436 [uc [-252. 436  (skin)
Vi = 0.185r+0.473g+0.114 587" 114 or
v= ¥ _ 0615R-0515G-0.100B | . .515. 615]
Y T 0599R+0.587G+0.114B R7' 799 440 x 440
_ 0.715r-0.415g-0.100 (non-skin)
0.185r+10.473g+0. 114
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4.2 Robustness to the Intrinsic Variability of Skin Color and Compactuess of the Skin Distribution

As an example, Figure 1 shows the skin distribution separately for each of the three different groups of
subjects for several representative chrominance spaces, for skin sample images recorded with the SONY
camera, Visually, the skin distribution appears more elongated in spaces such as the h1-h3, uwv (Yuv) and H-S
(HSV) spaces, while it appears more compact in the r-g, CIE-xy, m-g-m-b and P1-P2 spaces, particularly for
the Astan subjects. Figure 2 shows the non-skin distribution for all the 41 chrominance spaces, on a
logarithmic scale in order to show all non-empty histogram bins. Since the non-skin distribution can include
any color, Figure 2 indicates that the gamut in all spaces with rectangular boundaries, except in the CIE-DSH,
HSV and HSL spaces, fills only a part of the entire space defined by the space boundaries, and its geometry
depends on the space that is considered. Table 6 shows that the area of the gamut can be computed
analytically for only a few spaces. Since the area in number of non-empty bins that is observed for those
spaces is generally larger than 95% of the total computed area, we assume that the number of non-empty bins
observed for the other spaces, as shown in Table 7, is very near the true area. Owing to the particular
boundaries of the CIE-L*u*v¥*, CIE-L*a*b*, r-g-rg-b and R1R2R3 spaces, the area for these spaces is not
considered here.

Table 8 shows the KLD and the HIN for the three skin groups for all spaces, when using the SONY
camera. Table 9 shows, for each relevant space and for both cameras, the area of the skin distribution relative
to the area of the gamut of possible colors. As the blue areas in both tables show, the normalized r-g and CIE-
Xy spaces, as well as the a’-b’, m-r-m-g, m-g-m-b, P1-P2 and R1-R2 spaces vield the most robust
distributions with respect to the intrinsic variability of skin color, because: 1) the KLD is consistently lower
across the three skin groups than for the other spaces (mainly across the first two skin groups), and 2) the
overlap between the skin groups varies typically within a relatively narrow range, between 45% and 64% for
most spaces. The 111213, 1112’13 and C1-C2 spaces yield the highest overlap between skin groups, indicative
of a higher robustness (relevant blue areas), but this advantage is offset by the large overlap between the skin
and non-skin distributions in those spaces, as shown by the relevant pink areas, and also in Subsection 4.4. In
almost all chrominance spaces, the distribution for the Asian subjects, who have an intermediate skin color, is
the most compact, in terms of the relative area of the distribution, in particular in the r-g, CIE-xy, C1-C2, a’-
b’, mod-rgb and P1-P2 spaces. This result is confirmed visually by Figure 1.

4.3 Shape of the Skin Distribution _

A few representative examples of the cumulative skin chrominance distribution for the Asian + Caucasian
subjects, obtained with both cameras, are shown in Figure 3. Visually, the skin distribution in the normalized
spaces fits well to the single Gaussian model, whereas in the un-normalized spaces, its shape is generally
complex and cannot be described well by a simple' model. Table 9 shows the KLD for all the chrominance
spaces and for both cameras. Since the KLD is consistently lowest for the normalized r-g and CIE-xy spaces,
together with the C;-Cs, a’-b’, mod-rgb and P,P; spaces, the skin distribution in those spaces can be
modeled by a single Gaussian.

4.4 Discrimination between Skin and Non-skin Distributions

Table 10 also shows the HIN for Asian + Caucasian subjects, for all the chrominance spaces and for both
camera sysiems, For both camera systems, the overlap between the skin and non-skin distributions is lowest
for the r-g, CIE-xy, TSL, CIE-DSH, HSV, CIE-L*u*v*, CIE-L*a*b*, C,-Cs, C;-Cs, r.g-rg.b (In-chroma}, a’-b’,
mod-rgb, P1P; and RyjR;R; spaces. Hence, the discrimination capabilities between skin pixels and non-skin
pixels are highest in these spacés. The low overlap cbserved in the CIE-DSH and HSV spaces may be due to
the fact that the gamut in those spaces fills the entire space defined by the space boundaries. The lowest
discrimination is found for the Li11; and 1;°1;°1;” spaces, as we already mentioned in Subsection 4.2,



a) Asians b) Caucasians ©) Dark skin color
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u-v [ Yuv)
Figure 1. 2-D top view of the cumulative histograms in several selected chrominance speces of skin sample
images of a) Asian, b) Caucasian subjects, and ¢) of subjects with dark skin color, recorded with the SONY

camera. Here, only the relevant part of the histograms is shown,
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Cb]‘CT[ Cb-Cr;

§-H (CIE-DSH)

CIE-u*v* (C) CIE-u*v* (D65)

H-5 (HSV)

¥ e

CIE-a*b*(C) CIE-a*b* (D63)

F-uv (Cill)

P,-P, Ri-R; Rax-R: u-v (Yuv)
Figure 2. 2-D top view of the cumulative histograms in 41 different chrominance spaces of 80 non-skin

sample images collected from various sources, on a logarithmic scale in order to show all non-empty bins.



Table 6.  Area of the gamut of all possible colors in a given chrominance space computed analytically, and
corresponding number of non-empty bins in the discrete histograms, for 10 different color spaces (16

chrominance spaces).

(S:gkgé{ COMPUTED | No OF BINS
rg 1/2 3,000
cepsi| 1.0 10,000
HSV 1.0 10,000
HSL 1.0 10,000
C1CaC3 1/2 5,000
r.g-rg.b oo e
a'-b' 13/4 4,330
mod-rgh /4 7,854
P4.Po 13/2 8,660
R{R5R5 ('8 oo

Table 7. Area of the gamut of all possible colors in a given chrominance space expressed as the number of

non-empty bins in the discrete histograms, for 15 different color spaces (21 chrominance spaces).

‘;3&83 No OFBINS
‘213 9,540
Ahahy| g 533
Ch, Cr, 2,616
Ch, Cr; 2,659
E-S 2,760
-Q 2,793
u-v 2,782
c(lgﬂlx)y 1,692
ey | 1,239
TSL 5317
o 919
L 745
2y 310
1’2l 265
Yuv 10,291
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Table 8. Fit of the skin distribution to a single Gaussian (KLD) and overlap of skin/skin and skin/non-skin
distributions (HIN) for Asians (A), Caucasians (C) and subjects with dark skin color (D), for 41 chrominance
spaces and for skin sample images recorded with the SONY camera.

KULLBACK-LEIBLER OVERLAP (HIN) BETWEEN | OVERLAP(HIN) BETWEEN
DVERGENCE DIFFERENT SKIN GROUPS |SKIN GROUPS AND NON-SKIN
COLOR| A C D A/C | A/D | C/fD |A/NS |C/NS |D/NS

s | 11771 | 0.9658 | 2.2285| 0.5919 | 0.6259 | 0.5349 | 0.1444 | 0.1992 | 0.2460
M2 | 13536 0.9798 | 2.2138 | 0.5934 | 0.6255| 0.5363 | 0.1463 | 0.2000 | 0.2489
hahy | 11237 | 0.9539 | 2.4292 | 0.5943 | 0.6244 | 0.5395 | 0.1461 | 0.2009 | 0.2503
mha | 51950 | 0.8987 | 2.7134 | 0.5935 | 0.6285 | 0.5355 | 0.1471 | 0.2004 | 0.2505 |
€byCri | 10569 | 0.7582 | 2.3620 | 0.6034 | 0.6464 | 0.5499 | 0.1520 | 0.2083 | 0.2632
Cba.Cra | 10990 | 0.7198 | 2.1675 | 0.6012 | 0.6489 | 0.5511 | 0.1509 | 0.2063 | 0.2645
ES | 1.1008 | 0.7440 | 1.6099 | 0.6025 | 0.6475 | 0.5528 | 0.1506 | 0.2095 | 0.2609
a | 1.1613 | 0.6412 | 1.8226 | 0.6030 | 0.6415 | 0.5620 | 0.1529 | 0.2088 | 0.2662
u-v_ | 10696 | 0.7073 | 2.1329 | 0.6034 | 0.6495 | 0.5561 | 0.1536 | 0.2093 | 0.2674
ra | 0.4878 | 0.6690 | 1.7057 | 0.5010 | 0.4739 | 0.5399 | 0.1047 | 0.1894 | 0.2558
| CEXY | 0.3771 | 0.5269 | 0.9205 | 0.5031 | 0.4882 | 0.5661 | 0.1132 | 0.2014 | 0.2637
| CIEXY | 0.4323 | 0.4906 | 0.8467 | 0.5103 | 0.5066 | 0.5692 | 0.1151 | 0.2017 | 0.2686
TSL_|10.0736| 4.6134 [17.2312] 0.4909 | 0.4681 | 0.5289 | 0.1112 | 0.1826 | 0.2432
CIE-DSH| 0.8066 | 8.7930 |18.7132] 0.4929 | 0.4688 | 0.5284 | 0.1026 | 0.1804 | 0.2305
Hsv | 27220 |20.0670|17.7311 | 0.4922 | 0.4675 | 0.5271| 0.1020 | 0.1803 | 0.2227
mst_| 1.7272 18.6020/17.7355| 0.4780 | 0.5537 | 0.6204 | 0.1405 | 0.2121 | 0.2200
PELvv | 02653 | 0.4121 | 3.3201 | 0.5535 | 0.5456 | 0.5905| 0.1124 | 0.1935 | 0.2388
sty | 02828 | 0.2832 | 2.8929 | 0.5044 | 0.5275 | 0.6503 | 0.1147 | 0.1840 | 0.2283

CIE-L-a"b"™

AT 0.1979 | 0.6845 | 3.4265| 0.5283 | 0.5308 | 0.5742 | 0.1096 | 0.1975 | 0.2404

_:m%é::;' 0.2137 | 0.3792 | 2.4141 | 0.5679 | 0.5111 | 0.6395 | 0.1103 | 0.1914 | 0.2471

E?lll!ﬁ 1.6057 | 4.8038 | 1.6153 | 0.5322 | 0.4002 | 0.3969 | 0.1830 | 0.2367 | 0.2567
-uv

wes i | 1.6348 | 4.0665 | 1.0664 | 0.5572 | 0.4156 | 0.3936 | 0.2140 | 0.2487 | 0.2743
G1C2  |23.6305/26.1568|29.4019| 0.7683 | 0.5471 | 0.6909 | 0.1671 | 0.2637 | 0.2931
C2.C3 | 0.2057 | 2.0942 | 58982 | 0.4947 | 0.4690 | 0.5355| 0.1029 | 0.1862 | 0.2593
C1-C3 | 0.6431 |12.8966 |16.1455| 0.4947 | 0.4692 | 0.5366 | 0.1029 | 0.2026 | 0.2484
hl2 | 19433 |20.1158 28.7567| 0.6756 | 0.8200 | 0.7159 | 0.3900 | 0.4103 | 0.4870
t2d3 | 1.9335|19.9077 |28.7633| 0.6757 | 0.8189 | 0.7188 | 0.3920 | 0.4117 | 0.4846
Wi3  1284289|21.3616/29.0135| 0.6808 | 0.8330 | 0.7172 | 0.3872 | 0.4093 | 0.4827
"1¥2 20,6039 /26.6590|30.5420| 0.6823 | 0.8217 | 0.7145| 0.3902 | 0.4123 | 0.4807
23 122.4415/28.357631.0432| 0.6825 | 0.8331 | 0.7200 | 0.3928 | 0.4138 | 0.4825
"1¥3  |20.8104 |26.2118 |29.8854| 0.6821 | 0.8212 | 0.7175| 0.3889 | 0.4087 | 0.4819
rgrgb| 04316 | 4.3017 |10.6025| 0.4764 | 0.4285 | 0.4766 | 0.0933 | 0.1696 | 0.1726
o-b | 04282 | 0.6836 | 1.5669 | 0.4995 | 0.4820 | 0.5444 | 0.1046 | 0.1873 | 0.2533
r-mg | 0.5026 | 0.5638 | 3.6269 | 0.4988 | 0.4709 | 0.5334 | 0.1036 | 0.1852 | 0.2455
m.g-mb | ,1916 | 0.6016 | 1.4755| 0.4890 | 0.4658 | 0.5246 | 0.1014 | 0.1818 | 0.2435
oe-mb | 03913 | 1.8047 | 5.6624 | 0.4946 | 0.4714 | 0.5352 | 0.1023 | 0.1848 | 0.2450
PiP2 | 01613 | 0.6085| 1.6328 | 0.4928 | 0.4698 | 0.5331 | 0.1031 | 0.1851 | 0.2492
PRz | 0.2508 | 0.6462 | 7.9108 | 0.4853 | 0.4575 | 0.5121 | 0.0995 | 0.1768 | 0.2084
R2.As | 03881 | 2.1389 |11.7300 | 0.4850 | 0.4590 | 0.5115 | 0.0988 | 0.1766 | 0.2114
FiAs | 03101 | 1.2686 | 9.8428 | 0.4841 | 0.4535 | 0.5020 | 0.0971 | 0.1734 | 0.2022
Yuv | 09517 | 3.0968 | 3.7347 | 0.5109 | 0.3532 | 0.3559 | 0.1651 | 0.2608 | 0.2546




Table 9. Area of the skin distribution for Asians (A), Caucasians (C), and subjects with dark skin color (D)
relative to the area of the gamut of all possible colors in a given chrominance space, for 33 of 41 chrominance

spaces and for both the SONY and SGI camera systems,

AREA OF SKIN DISTRIBUTIONS (% OFALL SPACE)
SONY DXC-9000 SGI

COLOR
COLOR| A | ¢ | D |A+C|A+C+D[A+C

213 |6279 | 8.396 | 5.975 | 9.518 |10.388 [18.040
MM 16273 |8.465 | 5.916 | 9.535 |10.469 [17.707
h2-M3 |6.346 |8.528 | 5.948 | 9.682 |10.563 [17.644
M3 16294 | 8.486 | 5.811 | 9.556 |10.416 [17.749
Ch.Cr 16.499 | 8.945 | 6.499 10.092 11.124 |23.012
Ch2.Cr2 | 6,544 | 8.988 | 6.581 10.041 10.982 [22.828
ES 6558 |8.804 | 6.522 |9.783 |10.725 |22.971
10 |6.481 |8.844 6447 | 9.882 |10.813 |23.022
UV 16,505 |9.166 | 6.505 10.209 [11.107 |23.077
rg 13.260 | 8.900 10.000|9.080 [13.140 |12.000
| CIEXY 4078 12,234 112.707 12.411 |17.317 [14.894
CIExy | 4278 12.752113.156 12.833(17.918 [17.111
imkmsu 15.648(24.074 [16.005
CIE-DSH| 5,380 [12.600 15.420 13.120 20390 |14.050
HSV |6.470 [14.730 18.500 15.420 25.160 |15.430
HSL |7.240 [15.38015.37015.910(23.100 |20.020 |

TS.‘..". 12.622 119.804 20.131 20.131 |26.551 |26.659

ey 12,349 19.329 20,269 119.597 |25.638 |28.993
C1-C2 10,760 |3.260 | 7.160 | 3.280 | 8.540 |11.260
C2C3 |6.680 [13.76012.940 15.600 |18.040 |20.620
€13 |6.400 [15.160 16.440 14.180|20.720 |10.800
Wd2 b7 419153.226/56.129 53.226|58.710 |69.355
243 b7 419 54,839 57.097 54.839 | 60.645 |61.290
s b5 807 53,548 55.484 53.871 60,000 |65.807
"1¥2 35,094 72.453 75.472 72.453 |84.906 |89.434
'2¥'3  30.566 67.547 73.585 68.302 |82.264 |84.151
143 39.62371.698 76.981 72.830 83.774 [88.302
a-b' 13349 |9.261 [10.370]9.423 [13.764 |12.494
m.r-mg 3489 | 6.685 [10.008]7.550 |11.752 [11.879
m.g-mb | 5895 14,311 |14.337[14.680  19.430 [18.118
mr-mb 4460 [10.122) 9.740 12.401 [12.270 |15.623
P1-P2 12991 (7.979 |8.718 (8.153 |11.571 |10.347
Yuv 12283 (19.901(15.92720.581 [24.507 |30.833
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Figure 3. 2-D top view of the cumulative histograms in several different selected chrominance spaces of
skin sample images of Asian + Caucasian subjects recorded with the SONY camera (left) and with the SGI
camera (right). Here, only the relevant part of the histogram is shown.
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4.5 Robustness to a Change of Camera System

The robustness to a change of camera system can be measured as the change in the KLD, in the HIN and
the global shift § of the distribution. As seen from Table 10, the change in the KLD is lowest for the r-g, CIE-
xy, C=Cy, a’-b’", mr-m.b and P;-P; spaces, while the overlap of the skin distributions between the two camera
systems (HIN skin SONY/SGI) is intermediate to low for those spaces. The highest overlap is found for the
lilxls, and 1;'1s°1y" but, as for the overlap between the three different skin groups, for those spaces this
advantage is offset by a significant overlap between the skin and non-skin distributions, and also by very large
values of the KLD for both cameras. The global shift S of the distribution is low to lowest for the above-
mentioned 6 chrominance spaces, and is also low for some of the spaces resulting from a linear
transformation from the RGB space. The low global shift for the r-g, CIE-xy, a’-b’ and P-P, spaces is
confirmed visually by Figure 3,

Table 10, Fit of the skin distribution to a single Gaussian (KLDY}, overlap of skin/non-skin and skin/skin
distributions (HIN), and global shift of the skin distribution for Asian + Caucasian subjects, for 41
chrominance spaces and for skin sample images recorded with both the SONY and $GI cameras.

= LER T
DIVERGEMNCE SR T O N - S m’m'- mm
COLOR SOMNY e | SOMNY SOzl BODNYS SN
SPACE | pafc-9000 | INDBIGO | D3MC-9000 | INDIGO Bl HG1

ta-la 0.8765 | 4.6131 | 0.1889 |0.1740 | 0.2031 | 0.1143
hihe | 59063 |4.9569| 01917 |0.1781 | 0.2034 | 0.0936
ha-ha 0.8218 | 5.70592| 0.19207 |0.1760 | 0.2013 | 0.1418
Mq-Ng 0.7288 | 4.9885| 0.1916 [0.1763 | 0.2020 | 0.1086
Ch.Cr | 6454 | 1.5237 | 0.1967 |0.1978 | 0.2214 | 0.0510
Cba Crz | 0.6084 | 1.4554| 01952 |0.1933 | 0.2251 | 0.0503
E-5 0.7658 | 1.4701 | 0.1965 |0.2008 | 0.2267 | 0.0505
-a 0.5926 | 1.2589 | 0.1975 (0.2017 | 0.2314 | 0.0464
u-v 0.5598 | 1.6010| 01988 |0.1950 | 0.2253 | 0.0464
g 0.4482 | 0.2681 | 0.1682 [0.1057 | 0.1487 | 0.0561
| CGEaY | 0.3768 | 0.2183| 0.1768 (0.11392 | 0.1781 | 0.0213
| S | 0.3796 | 0.2351 | 0.1817 |0.1139 | 01822 | 0.0205
TSL 6.2430 | 0.6211 | 0.1694 |0.1041 | 0. 1466 | 00754
CIE-DSH | 46092 | 9.8105| 0.1635 |0.1045| 0.1502 | 0.0734
HSV |1 54888 |24.5459 0.1633 |0.1006 | 0.1383 | 0.2357
HSL 133774 |24 5932 0.1949 |0.1391 | 0.2400 | 0.2354 |
;,:—;{ET ™~ 1 0.1917 [ 1.0639]| 0.1715 |0.1377 | 0.2385 h2.2a724
=

e s | 0.1828 | 0.8657 | 0.1667 |0.1291 | 0.1599 [13.8944%

CIE-L "o 5™

s | 0.2282 | 0.5040| 0.1740 |0.1347 | 0.2606 | 9.3797*

|“ices ms | 0.1901 | 0.3795| 0.1705 |0.1238 | 0.1793 10.45124
o s 2.6016 | 0.8623| 0.2274 |0.1588 | 0.0950 |0.1235
—id

| Toseus | 2.1259 | 0.8294| 0.2406 |0.1869 | 0.1007 |0.1261
Cq.Ca 37.7590 (14.1395 0.2188 |0.1575 0.1959 | 0.0850
C=-Ca 0.2470 |0.2890 | 0.1618 |0.0991 | 0.1406 |0.0850
e e | 1.0441 | 8.0846| 0.1741 (01099 | 0.1608 |0.0319

112 14,9248 (27.1080 0.4379 |0.2962 | 0.2742 |0.1265
'2ls 114 8468 [27.0137] 0.4337 02959 | 0.2751 |0.1022

"1} 172852 [27.0444] 0.4341 (02959 | 0.2751 |0.1586
1¥'2 357310 28.0667] 0.4301 |0.2955| 0.2729 |0.2217
Y23 |37 5210 28.8758 04415 |029a8| 0.2730 |0.137a

"ts |24 7953 284646 0.4307 |0.2947 | 0.2715 |0.1980
rg-ragb| 1 3728|3.6653| 0.1539 |0.0737 | 0.0943 |0.2985
el 0.4483 | 0.2485| 0.1669 |0.1053 | 0.1531 |0.0406

g | 0.4288 | 0.4315( 0.1654 |0.1046 | 0.1392 | 0.0935

mg-mb | 02839 0.2790| 0.1639 |0.1016 | 0.1362 |0.0835
ramb | 0. S898 | 0.5921 | 0.1659 |0.1042 | 0.1453 |0.0468

P2 | 02502 0.2206 0.1661 [0.1042 | 0.1424 |0.0575
RiRa 0.2876 | 0.7896| 0.1606 |0.0940 | 0.1293 |0.1466
Fa-Fa 0.6511 | 1.7565| 0.1601 [0.0914 | 0.1274 |0.1815
F1FPs | 03868 1.3170| 0.1582 |0.0908 | 0.1225 [0.2326

ko 1.4184 38764 | 02381 0.2578 | 0.2864 |0.2510
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4.6 Robusiness to Changes in Illumination Conditions and Computational Cost of the Color Space
Transformation

Finally, it is well known that a nermalization of RGB values by (R+G+B) or of CIE-XYZ values by
(X+Y+Z) reduces the most the sensitivity of the skin distribution to changes in illumination (the normalized
spaces are robust to minor changes in illumination conditions), and a linear transformation from the RGB
space, or a non-linear conversion into the normalized rgb coordinates and into the CIE-xyz space is not
computationally intensive compared to that into other spaces. The mod-rgb space also provides a suitable
normalization,

4.7 Influence of the Number of Skin Sample Pixels on the KLD and on the HIN

The results of the skin chrominance analysis have so far been presented for the fixed numbers of skin
sample images (or of skin sample pixels) specified in Subsection 4.1, Although these numbers are believed
to be sufficiently large to warrant a statistical analysis, the results of the skin chrominance analysis depend on
the number of skin sample pixels. Thus, it is necessary to analyze the dependency of the skin chrominance
distribution on the number of skin sample pixels (or images) that are collected in order to statistically validate
the results presented previously in this report [23]. Most importantly, the variation of the shape of the skin
distribution, that determines the complexity of the skin chrominance model that is required in order to obtain
a high efficiency of skin pixel detection, and the variation of the degree of discrimination (or the overlap)
between the skin and the non-skin distributions, that ultimately limits the performance of skin pixel detection,
are to be analyzed. Here we consider a subset of the global set of chrominance spaces, namely the normalized
and perceptually plausible spaces, as well as some members of the “other non-linear spaces™ sub-group.

Figure 4 shows graphs of the KLD as a function of the cumulative number of skin sample pixels from the
skin sample images collected with the SONY camera, for the three different skin groups separately, for the
normalized spaces and for the "other non-linear spaces” sub-group. Figure 5 shows the corresponding graphs
of the HIN, for the normalized spaces, the perceptually plausible spaces, and finally for the other non-linear
spaces sub-group. The HIN is of course caleulated for the usual fixed number of 80 non-skin sample images
or equivalently, of 2.6606x10E+06 non-skin sample pixels.

Asians Caucasians Dark Skin Color
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Figure 4. Graphs of the Kullback-Leibler Divergence (KLD) as a function of the cumulative number of skin
pixels from skin sample images collected with the SONY camera, for Asian (left column), Caucasian (middle
column), and dark-skin colored subjects (right column), a) for the normalized chrominance spaces, and b) for
the “other non-linear spaces” sub-group.
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Figure 5. Graphs of the Normalized Histogram Intersection (HIN) between skin and non-skin distributions
as a function of the cumulative number of skin pixels from skin sample images collected with the SONY
camera, for Asian (left column), Caucasian {middle column), and dark-skin colored subjects (right column},

a) for the normalized chrominance spaces, b) for the perceptually plausible spaces, and c) for the “other non-
linear spaces™ sub-group.

In the case of the KLD, for the Asian subjects, the KLD decreases rapidly when the number of skin
sample pixels Ns is small, when it is less than about 1.0 x 10E+04 for the normalized spaces and 3.0 x
10E+04 for the other non-linear spaces sub-group. For larger Ns, it converges rapidly and saturates at low
values. The behavior of the KLD is more complex for the Caucasian subjecis, but convergence also occurs
when Ns is larger than about 7.0 x 10E+04. The KLD for the dark skin group also converges, but always to
significantly high values compared to the other two groups. Thus, the fit to a single elliptical Gaussian is
generally highest for the Asian subjects, and only a relatively small number of skin sample pixels are required
for calibration (with the single Gaussian model, typically by use of the Mahalanobis metric [2] [4]).

In all cases, the HIN increases rapidly when Ns is small {as new skin sample images are added to the
histograms), generally, when it is less than about 2.5 x 10E+04 for Asian subjects and 7.0 x 10E+04 for
Caucasian subjects, but for larger Ns it converges rapidly and saturates at a stable value. The comparison with
the dark skin group is made difficult owing to the comparatively small number of skin sample images from
that group that were available, but it can be seen that the HIN for dark skin colors always converges to higher
values than that for the Caucasian subjecis, and the HIN for the latter group always saturates at higher values
than the HIN for the Asian subjects. Hence, the degree of discrimination between skin and non-skin pixels is
generally the highest, and significantly so, for the Asian subjects than for the other two skin groups, the
degree of discrimination for the Caucasian subjects reaching an intermediate level. Subsequently, the highest
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performance of skin pixel detection may be achieved for the Asian subjects. once again requiring only a
relatively small number of skin sample pixels for calibration. We note that, when Ns is small, hence for a
small initial number of skin sample images, the order in which the sample images are added to the cumulative
histograms may significantly influence the precise shape of the curves for both the HIN and the KLD, but the
convergence, and eventually the saturation of the curves are statistically warranted as Ns increases 1o large
values.

In conclusion, given that, for the total number of skin sample pixels (images) that we collected, the KLD
and the HIN lic well into the saturation range, and by generalizing the results presented here to the
chrominance spaces that we did not consider in this subsection, the previous results presented in this report
may be considered to be statistically valid.

4.8 Example of Skin Pixel Detection

The skin pixel detection is performed by use of the Mahalanobis metrie, that is inherent to the single
Gaussian chrominance model, A detailed analysis of the skin color calibration, the thresholding and
subsequent segmentation algorithm can be found in [2] [4]. Thresholded images are subjected to a connected-
component analysis. Figure 6 shows the segmentation (and face detection) results for two images of Asian
subjects with a complex scene background, for the r-g space and for the H-S (HSV) space. Due to the
complex shape of the skin distribution in the H-5 space, in that space a large number of non-skin pixels are
misclassified as skin, and parts of the background are connected 1o faces and to a hand, thus making difficult
the task of automatic face or hand detection,

ey 1
Original Image
H-

Original Image
Normalized r- H-5 (HS

Resulis of face detection process " Results of face detection process
Figure 6. Examples of the detection of skin pixels and of the faces of Asian subjects in complex scene
images, for the normalized r-g chrominance space (left column) and for the H-8 space (HSV color space)
{right column), by use of the single Gaussian chrominance model. The original images were recorded with the

SGI camera (see Subsection 5 of Phase | Section for a detailed overview of the face detection algorithm).



4.9 Analysis of the KLD and of the HIN for Skin Sample Images Recorded under Unconstrained Scene
Conditions '

We now consider the distribution of human skin for skin sample images recorded under unconstrained
scene conditions [24]. Typicaily, unconstrained environments include indoor or outdoor illumination
conditions that are highly variable both in space and time, complex scenes with a large variety of objects,
different camera systems used to record images, and also, in our analysis, a large spectrum of intrinsic skin
colors (physically, the skin spectral reflectance power density and its variabiality along a confinuum of
possible skin colors). Hence, unconstrained environments imply that scene conditions are generally
uncontrolled and/or uncontrollable. The World Wide Web (WWW) may be considered to be a suitable
medium to collect a statistically significant number of skin sample pixels under such conditions. We therefore
semi-randomly selected and manually collected a large number of skin and non-skin sample images on the
WWW: In total, 300 skin sample images and 80 large non-skin sample images were collected (the non-skin
sample images being the same ones as those that we have used previously), yielding a total of
1.118237x10E+06 skin pixels and of 2.6606x10E+06 non-skin pixels respectively. Figure 7 shows several
examples of skin sample images that reveal the large diversity of observable skin colors, particularly under
unconsirained image scene conditions. Examples of the non-skin sample images can be seen in Figure 8.
Figure 9 shows the cumulative chrominance distribution for all the skin sample images, for a sub-set of 6
different chrominance spaces. A logarithmic scale is used so that all histogram bins that are not empty can be
seen, because the distribution of dark skin colors is very diffuse [4]. Visually, the skin distribution in each
space covers a much larger surface area and appears to be significantly more complex-shaped than the
distributions in the same spaces for the three different skin color groups (Asians, Caucasians, and a dark skin
group) that were shown for controlled image scene conditions. In particular, in the perceptually plausible
chrominance spaces, the skin distribution covers the whole range of saturation S and a significantly larger
range of hue H (or of tint T) at low values of S, thus requiring for these spaces a complex model for skin pixel
detection under general, unconstrained image scene conditions.

We now analyze the variation of the shape of the skin distribution or its fit to a single elliptical Gaussian
in terms of the KLD, and the variation of the degree of discrimination between skin pixels and non-skin pixels
in terms of the HIN (for the fixed cumulative number of 2.6606x10E+06 non-skin pixels), as a function of the
cumulative number N, of collected skin sample pixels. Figures 10 and 11 show graphs of the KLD and of the
HIN respectively, for 6 different chrominance space sub-groups: the spaces resulting from a linear
transformation from the RGB color space, the normalized, perceptually plausible and perceptually uniform
spaces, and finally for the other non-linear spaces sub-group, divided further into two smaller subsets for
visual clarity.

For the large méjority of chrominance spaces, the KLD first decreases rapidly and then fluctuates at low
values of Ny, as new skin sample images are added to the histograms, typically when N; is less than about 1.0-
2.0 x 10E+05 pixels. For larger N, the KLD converges rapidly, except for the “linear spaces™ sub-group where
fluctuations still occur, and it saturates at a stable value when N; is larger than 1.0 x 10E+06 pixels. However,
the saturation occurs very rapidly (N; < 1.0 x 10E+05 pixels) and at high values of the KL.D (20.0 < KLD <
30.0 units) for the Lilzlz , 1,’y’ly”  and for the C;-Cs spaces. The fit to a single elliptical Gaussian appears to
be generally highest for the linear spaces, the normalized r-g and CIE-xy spaces, and for the C,-Cs, a’-b’,
mod-rb, mod-gb, P;-Ps, Rj-R;, Ri-R; and Yuv spaces, where the KLID saturates in the vicinity of 1.0 unit.
Thus the single Gaussian model can in principle be applied to these spaces for skin pizel detection and
Subséquent skin color-based image segmentation (typically by use of the Mahalanobis metric [2] [4]),
whereas the I11]; , 1;’1;’]l;" and Cy-C; spaces require a more complex model, independently of the number of
skin sample pixels that are used for initial color calibration and image thresholding. Also, in accordance with
a visual inspection of the histograms shown in Figure 9, the KLD for the perceptually plausible chrominance
spaces is relatively high.

Let us note that we observed similar trends under controlled image scene conditions [23], where the KLD
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saturates generally below 1.0 unit for the r-g, CIE-xy, C;-Cs, a’-b’, mod-rgb, P;-P; and R,R;R; spaces, for
Asian and Caucasian subjects (when Ny = 1.0-3.0 x 10E+04 pixels and Ny = 7.0 x 10E +04 pixels
respectively). As can be expected, owing to the large variability of observable skin colors, under
unconsirained image scene conditions a significantly larger cumulative number of collected skin sample
pixels (or images) are required for the KLD to saturate, and at higher values, than under controlled scene
conditions,

In the case of the HIN, for all spaces, the HIN increases rapidly when the number of skin sample pixels N,
is small (as new skin sample images are added to the histograms), generally when N; is less than about 1.3 x
10E+05 pixels. Fluctuations of the HIN then typically occur until Ny reaches about 5.0 x 10E+05 pixels. For
larger values of N, the HIN converges rapidly to a narrow range of values, between 27% and 38%, and
saturates for most spaces between 30% and 35%. As for the KLD, the behavior of the I;1;1; and 1,’1;'l;" spaces
(and to a lesser extent that of the C,-C; space) is atypical, in that the HIN for those spaces saturates at
significantly high values, near 55%. Hence, under unconstrained image scene conditions, and when a
sufficiently large number of skin sample pixels are collected for color calibration, the degree of discrimination
between skin pixels and non-skin pixels does not generally vary significantly depending on which
chrominance space is used, although some spaces, such as the “linear” spaces or the F-uv space, may be
slightly better suited for skin pixel detection when taking this particular criterion into account, as seen in
Figure 11. The 1;l;l; and 1,'1;’l;" spaces are the least efficient for discriminating between skin pixels and
non-skin pixels, probably because of the particular geometric characteristics of these spaces, which we
discussed briefly in Subsection 4.2. This plausible explanation also applies to the results that are obtained for
the same spaces in terms of the KLD.

For the HIN, the trends under controlled image scene conditions [23] are quite similar to those that prevail
here under unconstrained conditions. In that case also, for the same reason as was given for the KLD, the
overlap between the skin and non-skin distributions is lower and saturates more rapidly (typically, for N, <
1.0 x 10E+05 pixels) than under unconstrained conditions (including for the In-chroma space, for which the
results are not shown here).

Taking into account both the KLD and the HIN, it is important to note that: 1) once again, when N, is
small, hence for a small initial number of skin sample images, the order in which the sample images are added
to the cumulative histograms may significantly influence the precise shape of the curves for both the HIN and
the KLD, whatever the chrominance space that is considered, but the convergence, and eventually the
saturation of the curves are statistically warranted as N; increases to large values; 2) the fluctuations of the
KLD and of the HIN observed at low to intermediate values of N, are probably caused by larger random
effects of a smaller number of skin sample images on the shape and on the area of the cumulative skin
chrominance distribution, and owing to their random nature, they would hence occur irrespectively of the
order in which the sample images are added to the cumulative histograms; 3) finally, the experimental results
presented in this subsection seem to indicate that at least nearly a million skin sample pixels are required for
calibration under unconstrained image scene conditions in order to obtain reproducible skin pixel detection
results on given input scene images.

EdE S EEN

Figure 7. Examples of skin sample images semi-randomly selected and manually collected on the World
Wide Web.

Figure 8. Examples of non-skin sample images semi-randomly selected and manually collected on the
World Wide Web.
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Figure 9. Representative examples of the cumulative histograms of 300 skin sample images semi-randomly

selected and manually collected on the World Wide Web, for 6 different chrominance spaces (top view,

logarithmic scale).
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Figure 10. Graphs of the Kullback-Leibler Divergence (KLD) or fit to a single Gaussian distribution as a
function of the cumulative number of skin pixels from skin sample images collected on the World Wide Web,
for 6 different chrominance space sub-groups.
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Figure 11. Graphs of the Normalized Histogram Intersection (HIN) between skin and non-skin distributions
{or of the discrimination between skin and non-skin pixels) as a function of the cumulative number of skin

pixels from skin sample images collected on the World Wide Web, for 6 different chrominance space sub-
Zroups.

4.10 Conclusions

In conclusion, overall, in terms of seven different criteria, the normalized r-g and CIE-xy chrominance
spaces, or spaces such as the a’-b” and P;-P; spaces that are constructed as a linear combination of normalized
r, g and b values, offer the best tradeoff and appear consistently to be the most efficient for skin color-based
image segmentation. In particular, the use of these normalized spaces obviates the necessity to apply a
complex and computationally intensive skin chrominance model in order to obtain a high quality of
segmentation, as is the case with most un-normalized spaces, in which the skin distribution 1s complex-shaped.
The C,-C; space, the mod-rgh space that also results from a suitable normalization, and to a lesser extent the
RB:R; space which can be expressed as ratios of normalized r, g and b values, are also good candidates.
Owing to their particular geometry, the Lil:l; and 1,°l;'l;” spaces are the least efficient for the specific problems
of skin pixel detection and of image segmentation based on skin color.



5 EHEAE - Face Detection and Hand Posture Recognition System

A flowchart of the face detection and static hand posture recognition system is shown in Figure 12, In
implementing the system, a fundamenial issue to address is the level of complexity of the scene background
at the location where the system is to be applied, because the robustness of the simultaneous detection and
discrimination of faces and of hands (or recognition of hand postures) against complex scene backgrounds is
a difficult problem which, to our knowledge, has not yet received much attention. The “background™ also
includes the clothes that a person is wearing, other body parts, and facial attributes such as glasses, hair and
hairstyle, ete...

The system shown in Figure 12 can adapt to varying degrees of scene background complexity in indoor
environments (office, home), to slowly varying illumination conditions, and it does not imply any a priori
assumption about the presence of a face (or of more than one face) or of a hand (posture) simultaneously in an
image (it is often implicitly assumed that a face is present in a scene when constructing a face detection
system). The system first uses a statistical skin color model to segment images and a statistical regulanity-
based shape model to detect faces. We then apply, to our knowledge for the first time, phase-only correlation
[25] to classify a subset of static hand postures of the JSL, each posture representing a given phoneme, and to
discriminate between hand postures and the image scene background. In effect, as can be seen from Figure
12, we decompose a 3-class problem, that involves the "face", "hand (posture)" and "scene background"
classes, into two binary classification problems, that involve, in succession, the classification of faces and of
hands, and the classification of hand postures and of the background.

FACE DETECTION MODULE HAND FOSTURE
RECOGNITION MODULE
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Figure 12. Flowchart of the face detection and hand posture recognition system, taking into account the image
scene background.

5.1 Face Detection Module

As shown in Figure 12, in the face detection module, the segmentation of an image input to the system is
performed at each pixel by use of both the chrominance of human skin and of an edge detection based on the
color vector gradient [26] [27]. To increase the robustness of face detection, fully translation-, scale- and in-
plane rotation-invariant Fourier-Mellin moments are then calculated for each significant blob that results from
the segmentation [4] [6], and the resulting feature vectors are here input to a multi-layer perceptron Neural
Network (NN) for the classification of faces and hands. The NN is trained to detect frontal views of faces,
which possess a statistical regularity, whereas hands can have a large variety of shapes. Hence, at this stage, it
is assumed that any blob that is not detected as a face is a hand.
5.1. 1 Skin Chrominance-based Image Segmentation

In accordance with the results of the skin chrominance analysis presented in Section 4, the image
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segmentation is performed here with the normalized r-g or CIE-xy chrominance spaces. In these spaces, a
simple, single Gaussian model is used to estimate the skin chrominance distribution. The thresholding
algorithm uses the Mahalanobis metric and is based on the discriminability between the chrominance
distributions of skin and “non-skin” pixels calculated from two sets of manually selected skin and non-skin
sample images, as described in details in [2].
5.1. 2 Color Vector Gradient-based Edge Detection

In order to complement the jmage segmentation based on the skin chrominance, we apply an edge
detection algorithm based on the gradient of the three RGB channel image field or the color vector gradient,
that was first proposed by Di Zenzo [26], and later more thoroughly investigated by Lee and Cok
[27]- As shown in [27], because the three R, G and B channels of a color image are generally correlated, the
color vector gradient is less sensitive to noise than the scalar gradient computed from each channel separately
or for gray-level images. The numerical computation of the modulus of the color gradient is performed by use
of either the Sobel or Prewitt operators. The edge detection is performed in the original RGB color image.
The edge image is then subtracted from the converted r-g or CIE-xy chrominance images, before applying the
skin chrominance-based image segmentation.
5.1. 3 Face-Hand Classification

For feature extraction, a selected number of low-order invariant moments [4] [6] are calculated for each
blob in the binary segmented images. We apply either the Fourier-Mellin moments generalized by Li [28] or
the orthogonal Fourier-Mellin moments developed by Sheng and Shen [29]. We have shown that, in the
specific application of face detection based on skin chrominance, the face detection performance by use of
either type of moments is similar [6], but the computational cost for the orthogonal moments is higher. The
NN used to classify faces and hands is trained with the back-propagation algorithm. When a face is detected,
it is marked by an ellipse, as described in details in [4]. -
5.2 Hand Posture Recognition Module

As Figure 12 indicates, any face candidate that is not classified as a face may be classified as a hand, as
long as the scene background is simple. Tncreasing the background complexity increases the probability of
background regions being misclassified as skin during the segmentation, and consequently of being detected
as a hand (or as a face). Both hands and background blobs incorrectly detected as skin may have a large
variety of shapes, so that the discrimination between the two classes by use of the invariant moments is poor,
One of the most important uses of hands in human-machine interactions is gesture recognition, for which the
shape distribution of a given segmented hand posture is consistent. The hand posture recognition module is
linked to the face detection module as follows: each blob classified as a hand is marked by a rectangular
bounding box, and then cropped from the image. A size normalization is then applied to each cropped image
to ensure robust recognition with respect to scale changes. There are several different hand posture
recognition algorithms that can be used. For example, in [30], an elastic graph matching and Gabor wavelets
are applied to hand postures of varying sizes and shapes against complex scene backgrounds in gray-level
images, with a correct classification rate of 86.2% for 10 different hand postures. In [31], 25 hand postures of
the International Sign Language are classified in gray-level images by use of only one pair of moment-based
size functions as features and of a NN for subsequent recognition. A cotrect recognition rate of over 85% is
achieved, but the scene background is almost uniform.

We propose to apply phase-only correlation [25] to every normalized blob in the segmented images, to
simultaneously discriminate between hand postures, and between hand postures and background blobs.
5.2. 1 Phase-Only Correlation Filter for Hand Posture Recognition

1t has been found by Oppenheim and Lim [32] that the phase information in the Fourier domain of an
image is considerably more important than the amplitude information in presefving the features of the image.
Horner and Gianino [25] used this result to construct a novel matched spatial filter that can be used for optical
pattern recognition, and derived the phase-only correlation filter: given an object to be recognized f(x,y),
where f(x,y) usually represents gray levels at Cartesian coordinates (xy) in a monochrome image, we



construct in the corresponding Fourier domain of fix,y), F(u,v), where (u,v) are the spatial frequencies
corresponding to (x,y), a filter with transfer function H‘P{u.vj such that

F (u,v) o ]
H = e-ip(uv,
R (5)

Where F*(u.v) is the complex conjugate of the Fourier transform of f{x.y), |F(u,v)| and d¢(u,v are
respectively the modulus and the phase of F(u,v), and where i*=-1. Figure 13 describes the synthesis of the
phase-only correlation filter from a well-segmented, normalized reference (or template) hand posture for the
Japanese phoneme “ki”, The Fast Fourier Transform (FFT) of the normalized hand posture £(xy) is
calculated for image dimensions of 64 x 64 pixels, Re{F'(u,v)} 15 the real part of the FFT of £(x,y) and
Im{F*{u,v)} is its imaginary part.

As Figure 12 indicates, we construct off-line a phase-only correlation filter for each well-segmented and
normalized “reference™ hand posture image belonging to a set of N, static hand postures of the JSL.  After
size normalization, any input hand posture image is correlated on-line with the resulting bank of N, phase-
only filters, resulting in N; correlation images, cach of dimensions 64 x 64 pixels. By using the FFT, the
computational load is thus O((N, + 1) M(logaM) + N;M?) for each input hand posture, with M=64. Since M is
small, hand postures can be recognized in real time.

The main advantage of the phase-only correlation filter over the classical matched filter (classical
correlation) is that it yields much higher and sharper correlation peaks [25], because it behaves as a high-pass
filter, and thus enhances the contributions of the contours of objects. This property is illustrated by the
example of Figure 14, in units of intensity, for the normalized reference hand posture representing the
phoneme “ki”. Also, the phase-only filter has very good discrimination capabilities between different objects
with similar shapes. As an example, Figure 15 shows, in units of intensity, the phase-only correlations of

“. 1

normalized input hand postures for the phonemes “ki” and with the reference hand posture for the
phoneme *“ki”. Despite the similarity between the two hand postures, the phase-only correlation peak
{maximum) intensity for the phoneme “ki” is 3.4 times higher than the corresponding phase-only cross-
correlation peak intensity for the phoneme “i”. Finally, the application of the phase-only filter is a simple
technique that neither requires a manual initialization, nor the tuning of any parameter. However, the phase-
only filter is much more sensitive than the classical matched filter to distortions of objects to be recognized,
and it is not rotation-invariant.

When the scene background is not taken into account, and when one addresses the specific problem of the
discrimination between different hand postures, the correlation with the highest peak intensity among the N,
correlations is selected to recognize a given hand posture (and phoneme). Despite its sensitivity to the
distortions of objects, the phase-only filter can discriminate between quite similar hand postures, as long as
the distortion of a hand posture to be recognized is not too large, because only the relative values of the

correlation peak intensities are taken into account during the recognition process.

HE{F'(I.I,\F}} Re{F'(u,v)}/ IF'(u,v)l
ﬂ:x!'y} r(xwf;' FFT
Phnnnme MxN

3 —-—I{

Segmented Normalized
Reference Reference
Gesture Gesture I m{F'(u,v)} I m{F'(uv)} IF{uwv)

64 x 64

H o (u,v)

Figure 13. Synthesis of a phase-only correlation filter from the normalized, segmented reference image of a
Japanese Sign Language (JSL) hand posture, here symbolizing the phoneme “ki",
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Figure 14, Phase-only autocorrelation of the normalized hand posture image for the phoneme “ki” (left) and
corresponding classical autocorrelation obtained with the classical matched filter (right). The higher top view
of the classical autocorrelation is shown in relation with the phase-only autocorrelation, whereas the lower top

view 15 scaled between 0 and 255 units.
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Figure 15. Phase-only correlations of the normalized input hand posture images for the phoneme “ki” (left)
and for the similarly shaped phoneme *“i” (right) with the reference hand posture for the phoneme “ki”.

5.2. 2 Hand Posture and Background Classification

The process of discriminating between hand postures and background blobs requires that one examine, for
N; different hand postures to be recognized (or reference hand postures), the N, phase-only correlations
obtained for each of a set of Ng normalized input hand posture blobs and Np normalized background blobs. If
we assign a threshold intensity (or amplitude modulus) to the correlations, such a threshold should be high in
order to reject background blobs, and conversely, low in order to detect hand postures with a high probability.

We then analyze the percentage of True Positives (or the correct classification rate) for hand postures
Ko M
CRG=p TPg/Ng and the percentage of True Positives for background blobs CRg =Y TPy/Ng as a function of

im] j=1
the correlation peak threshold intensity or amplitude modulus. A threshold value yielding the best trade-off
discrimination between hand posture blobs and background blobs can then be found at the intersection of the

curves for CRgand CRg.

6 ¥R

The face and hand posture image database consists of 516 frame sequences of 258 Japanese subjects. Each
sequence contains 30 frames, recorded in the “percept-room™ of the HOIP laboratory (using halogen lamps at
3,200 degrees Kelvin as a source of illumination) with a SONY DXC-9000 camera (using a white balance)



that zooms on each subject in each frame sequence, for a total of 15,480 static images of faces with a variety
of poses, scales, in-plane rotations and facial atiributes, and of hand postures. The hand postures represent 45
static hand signs of the JSL (there are 11 frame sequences for each hand sign). Each image contains only one
face and one hand posture. The training and test sets both consist of 541 static images semi-randomly selected
from the 516 frame sequences (no test image is part of the training set}). The skin chrominance calibration for
the r-g and CIE-xy spaces is performed by use of 901 skin sample images (1.9x10E+06 skin pixels) manually
selected from the image database, and of the 80 non-skin sample images (2.6606x10E+06 non-skin pixels)
selected from various sources that were used for the skin chrominance analysis. The face detection and hand
posture recognition system is implemented on a PC Pentiwm-III, T GHz. The dimensions of the input images
are 640 x 480 pixels.

The complete process of face detection and hand posture recognition is illustrated in Figure 16. The results
of the skin chrominance-based image segmentation are generally very similar for both the r-g and CIE-xy
chrominance spaces. We note that the color gradient-based edge detection efficiently separates the neck of the
subject from her face, but that it also tends to separate the fingertips from the hand.

Before presenting the general results of face detection and hand posture recognition, it is instructive to
examine some particular examples. We first focus on the detection of faces and of hands. Figure 17 shows an
example of the successful detection and discrimination of the face and the hand {as well as an arm) of a
Japanese subject at three different scales. The segmentation results vary significantly as the camera zooms on
the subject. In this particular case, a binary face and hand classification problem is valid, since the scene
background (which is almost uniform) and the clothes, as well as the hair, have been correctly classified as
“non-skin” during the segmentation. However, in the example of figure 18, the clothes of a subject have been
misclassified as skin, and the color gradient-based edge detection successfully separates the subject’s face
from her clothes. Consequently, the face is successfully detected. Figure 19 show various misclassification
errors, such as a hair region of a subject detected as a hand, a hand misclassified as a face, and the double
detection of a face owing to the presence of glasses. Other types of errors include face localization errors, a
face or part of a face misclassified as a hand, or parts of clothes detected as either hands or faces. The
misclassification of hands or the detection of background blobs as faces are due to the invariant properties of
the moments used for feature extraction, and also to the resemblance of the shape of the misclassified blobs to
segmented frontal views of faces. Faces misclassified as hands typically are connected to the neck, as the
color gradient-based edge detection does not always completely separate the neck from the face, and the
misclassification may also occur because the shape of the segmented face blobs varies significantly as the
camera is zooming on the subjects.

In order to evaluate the general performance of the face and hand detection and digcrimination sub-system,
without taking background biobs into account, we first define the rate of correct face detection as:

CDp = % TPg / Ng
= (6
Where TPg is a true positive for faces (a face that is correctly detected), and where Ng is the total number of
faces in the test set, which also includes the false negatives for faces FNf (faces that are not detected, or
misclassified as hands). Hence,

Ne Nr
S TPr+ » ENg=Ng
i=1 i=1 (7)
Similarly, we define the rate of correct detection of hands CDg as
N
CDg = » TPu/Ny
5 (®8)

Where TPy is a true positive for hands and Ny is the total number of hands in the test set. As for faces, we
- have the following relation:

Nu Nu
Z TPu+ z FNyg =Ny
j=1 j=1 (9)
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Where FNy is a false negaiive for hands (a hand that is misclassified as a face). Finally, we define the rate of
discrimination between faces and hands as

Nr Ny
D= (Z TPr+ » TPy |/(Np+ Ng)
i=1 i=1

10
Since in our experiments, Nr= Nu =541, in this particular case, D=( CDg+ CDg) /2, or D( is 1he average of
the two detection rates. _

Table 11 presents the general results of face and hand detection and discrimination when both the color
gradient-based edge detection and the skin chrominance-based image segmentation are applied. The
performance of face detection is significantly higher than when .using the chrominance only (in which case
CDg = 70% for both chrominance spaces), and it is practically the same for both chrominance spaces, because
both spaces yield very similar segmentation results. The correct detection rate of hands is lower, because of
the tolerance of the invariant moments, but slightly higher than when using the chrominance alone (in which
case CDy=72% for both spaces). The time required for face and hand detection, that depends on the -
mumber and size of the blobs that are present in a segmented image, was on average 270 [ms] on the Pentivm-
III PC and for the input image dimensions that we used, before being significantly reduced during Phase II of
the project.

We now focus on the recognition of hand postures of the JSL., before presenting general results of the
discrimination between hand postures and background blobs. Figure 20 illustrates the recognition of three
different hand postures representing the phonemes “ni”, “ma”, and “wo” respectively, among a set of 12
different (reference) hand postures, thus requiring the computation of 144 phase-only correlations of
dimensions 64 x 64 pixels. All hand postures are correctly classified, except the haud posture for the
phoneme “wo”, which is confused with the posture for the phoneme “ho”. This particular misclassification
example illustrates a problem that is bound to oceur in realistic situations, namely, the classification of a hand
posture where an exposed forearm or arm is connected to the hand, and thus changes the shape of the hand
posture significantly. Table 12 presents general results of the recognition of a subset of 8 hand postures of the
JSL, with 94 input hand postures, each corresponding to one of the 8 reference phoneme hand postures, thus
requiring the analysis of 752 phase-only correlations. In this experiment (which does not take the scene
background into account), the phase-only filier achieves a correct classification rate of over 95%. However, it
is expected that the classification rate decreases as the number of hand postures to be recognized and the
number of input hand postures increase.

We analyze the discrimination between hand postures and background blobs by use of 15 different
reference hand postures, and of a set of 236 input hand posture blobs and of 261 background blobs. Hence, a
total of 7,455 phase-only correlations are examined. Figure 21 shows the graph of the correct classification
rates of hand postures CRg  and of background blobs CRp as a function of the threshold amplitude modulus
of the phase-only correlation, for convenience. The best tradeoff discrimination rate is found to be 86.1%, for
a threshold amplitude of 669 units (or 4.476 x 10E+05 units of intensity). This discrimination rate obtained
with the phase-only correlation filter can be considered to be high, given the large variety of possible shapes
of both hand postures and background blobs.

Finally, because of the relatively general approach that we adopt to detect faces and to recognize hand
postures, our gystem can be applied to color images with complex scene backgrounds selected from various
sources, for example, from the World Wide Web, hence recorded under different illumination conditions and
with different camera systems. Figure 22 shows examples of the successful simultancous detection of faces
and of hands of Caucasian subjects with different skin colors, Although the skin color calibration was
performed here for Asian subjects only, the robustness of the 1-g and CIE-xy chrominance spaces to the
intrinsic variability of skin color, as compared to other spaces, leads to the correct detection of a relatively
large range of skin colors. We note in particular that several faces can be detected simultaneously (although
the hands in the last image could not be discriminated against the background). _

In conclusion, the biggest challenge for the problem of the detection of faces and of hands in color images



lies with the background regions thai have been detected as skin during the color segmentation. We
nevertheless could achieve a face detection rate of over 88%, a correct hand posture classification rate of over
95%, and a best tradeoff discrimination rate between hand postures and background blobs of 86.1% for three
different sets of test images. The phase-only correlation filter is a simple and promising technique for the
recognition of static hand postures in binary segmented images, although it may not be suitable for all real
situations. We finally suggest that the performance of face detection {as well as the correct classification of
hands) can be further improved by searching for facial features in each face candidate blob. The quality of

segmentation can also be improved by considering correlations between neighboring pixels.

(e) (f (2)
Figure 16. Hlustration of the face detection and hand posture recognition process. (a) original input image, (b)

results of the color gradient-based edge detection, (¢} and (d): results of the conversion of the original image
into the r-g and CIE-xy chrominance spaces respectively, with subiraction of the color edges, (e) skin
chrominance-based segmented image, with two blobs (in red) used for feature extraction, (f) results of the
face/hand classification, and (g) final results of hand posture recognition, with the recognition of the phoneme
k™,

Figure | 7. Examples of the successful detection and discrimination, at different scales, of the face and of the

hand of a Japanese subject. The segmented images are in the left column of the figure,

1]
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Figure 18. Example of the successful detection of the face of a Japanese subject when combining the skin
chrominance-based image segmentation with the color gradient-based edge detection.

Figure 19. Example of problems occurring with the present face and hand detection system. From left to right:
detection of a hair region as a hand, misclassification of a hand as a face, and double detection of a face due to

the presence of glasses,

Table 11. General results of the correct detection and discrimination of faces and of hands when combining
the skin chrominance-based image segmentation with the color gradient-based edge detection (without taking
into account the background blobs).

Detection and Discrimination Results
Chrominance and Color Gradient

Chrominance CDg (%) | CDy (%) D{%)
Space

r-g 88.5 73.2 80.9

CIE-xy | 88.3 729 80.6

=

ki to na ni nu hamuwo
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e

Figure 20. Example of the recognition of three different hand postures representing the phonemes *ni”, “ma
and “wo" respectively. In the rightmost image, the posture for “wo™ was misclassified as the posture for *ho™,

because the forearm of the subject is exposed and connected to her hand.
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Table 12. Resulis of the correct classification of § different Japanese phoneme hand postures for a total of 94
input hand postures, each corresponding to one of the 8 reference phoneme hand postures (without taking into

account the image scene background).

Mumber of Recognition
Phonemes | toqt Gestures | Rate (%6)
ki (5] 100.00
to 12 83.33
na 17 10:0.00
ni 10 100.00
nu 9 100.00
ha (] 83.33
mu 15 100.00
WO 19 Q4.74
Total 94 95.74
i T
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Figure 21. Graph of the correct classification rate of hand postures CRg and of background blobs CRp as a
funetion of the value of the threshold amplitude modulus of the phase-only correlation.

Figure 22. Examples of the successful detection of faces and of hands of Caucasian subjects in images
selected from various sources, mostly from the World Wide Web.
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During Phase 11 of the HOIP project, the face detection and hand posture recognition system based on skin
color was integrated into a more global, real-time system that relies on the three fundamental cues of color,
shape and motion: "DRUIDE", which stands for “Detection, Recognition, Unification, Interpretation,
Decision, Evolution™, consists of three mutually complementary and independent sub-sysiems, in order fo
simultaneously deteet or track multiple faces as well as recognize hand postures of the JSL in color video
sequences .In addition o the module based on skin color, a second module detects faces concurrently in gray-
level images by use of SVMs , while a third module performs face tracking, so that the overall robusiness of
detection and recognition of the system is significantly increased. This report presents, for Phase 11 of the
HOIP project, an overview and experimental results of the capabilities of the DRUIDE system.

2 AEOBIE

The implementation of the DRUIDE system is designed to increase the robusiness of the initial skin color-
based face detection and hand posture recognition system, by adding SVM-based face detection that uses
luminance information, and also by tracking faces in color video sequences.

3 EEAE - Architecture of the DRUIDE System

DRUIDE was developed to offer high-level functions covering many aspects in computer vision-based
human-machine interaction, enabling shortened development time and increased application-oriented
productivity, It consists of a library that includes algorithms for detectng and tracking objects, more
specifically faces [1], recognizing static hand postures [1], and also functions related to face recognition and
to the detection of facial features, Basic routines cover hardware optimization, image processing and scene
understanding. DRUIDE seamlessly integrates and builds upon APIs such as DirectShow, DirectX, and Intel’s
OpenCV [33]. The flowchart of the sysiem is shown in Fig. 23,

INPUT OUTPUT

Mhillireacthudion image Scanning I._'f"'“'“'“ﬁ‘ Eace Celacton

SVM-based
Face Detection

Color-based
Face Detection

Mean-Shift
Tracking
IIIII:Iilll.lllllllliillllllllil

Figure 23, Flowchart of the DRUIDE face detection, tracking and hand posture recognition system. for a
aiven video sequence.



3.1 Skin Color-based Face Detection and Hand Posture Recognition

The core sub-system of DRUIDE is the color-based face detection and static hand posture recognition
module, located in the middle section of the flowchart. The system first detects faces in an input 24-bit RGB
color video stream acquired with a Pan-Tilt-Zoom (PTZ) camera. The skin color-based image segmentation is
implemented as a first step at each video frame pixel. As we showed in the Phase I section of this report,
suitably normalized chrominance spaces are the most efficient for image segmentation based on skin color.
Here, the normalized r-g space was selected. To insure a more robust segmentation, we also have the option to
apply the color (RGB) vector gradient-based edge detection, so that chrominance and luminance information
are fused. In this module, a multi-layer perceptron NN is used for the clagsification of faces and “non-faces™.
3.2 SVM-based Face Detection .

In order to more robustly avoid confusions between faces and “non-face” blobs with similar shapes (hand
palms for example), the image region enclosing a given blob is normalized and analyzed by use of a Support
Vector Machine (SVM) classifier, as shown in the top section of Figure 22. Our approach is similar to the one
described in [34], and our implementation is based on the LIBSVM library. The p-support vector binary
classifier has the capability to discriminate between faces and non-faces (the parameter p lets the user
control the number of support vectors, as described in [35]). The training phase for the detection of faces
involved 12,000 face images and 16,000 non-{ace images from various sources, mainly from the World Wide
Web. After optimizing the SVM-based face detection algorithm, we use this part of the DRUIDE sysfem as an
independent face detector that runs concurrently with the skin color-based face detector, as shown in Figure
23, in order to increase the robustmess of the face detection process. This approach also allows to regularly re-
initialize parameters related to the skin color distribution in order to cope with changes of illumination,

3.3 Mean-5hift Face Tracking

In order to robustly track faces in a video stream, we use a statistical approach based on the mean-shift algerithm [36] [37],
which consists of a gradient ascent scarch over the skin color distribution. Although the algorithm is limited to the
tracking of elliptical objects, it is somewhat robust to changes in illumination conditions. The system can track multiple
moving objects simultaneously and is robust to partial occlusions and to camera motion.

3.4 Camera Motion

Fixed video cameras, with the exception of omni-directional sensing devices and fisheye lens-mounted
cameras, can sense only a very limited part of their environment, Moreover, their resolution is often too
limited to precisely analyze distant objects. By mounting the video camera on mechanical devices, it is
possible to overcome such restrictions: while pan-tilt capabilities, provided by two rotational engines, can
compensate for the narrow field of view of cameras, zooming allows the observation of remote objects. When
linked to computer vision algorithms and when precisely controlled, pan-tilt-zoom (PTZ) cameras can help
solve complex tasks related to vision-based human-machine interaction. We use two SONY EVID-100 PTZ
cameras that are controlled through the serial port of a PC (software and hardware extensions to up to eight
cameras and control through the VISCA protocol are supported). The two cameras were optically and
mechanically calibrated [38] [39] [40]. Both the face tracking and the camera control are illusfrated in the
bottom section of Figure 23,

4 FFR

The DRUIDE system is implemented on a single PC computer with a 1.0 GHz Pentium-III processor. The
dimensions of the input video frames are 320 x 240 pixels. Preliminary experiments, carried out on 540
frames semi-randomly selected from 510 video sequences, yield a correct face detection rate of about 90%.
When only hand postures are considered, for a sub-set of 8 reference hand postures of the JSL and a set of
100 input hand postures, the POCF achieves a correct classification rate of over 95%. When the scene
background is also taken into account, the POCF yields a best tradeoff discrimination rate of over 86%
between a set of 236 input hand posture blobs and another set of 261 background blobs. The performance of
the DRUIDE system is illustrated in Figures 24 to 28, for faces with different skin colors and with a variety of



T—Y1—-3 MERBICESN-BERHEF LRBERICHATIHE

poses and scales. The color video sequences are recorded in an office environment, under slowly varying
illumination conditions, but with varying degrees of scene background complexity. Despite the obvious
robustness to dynamic scene conditions, errors typically include face localization errors, a hand or other body
part, or a background blob misclassified as a face, or a single detection or tracking of two connected faces or a
double detection of a single face,

Finally, in order to achieve real-time performance (the sysiem runs at 30 frames/sec), we took special care
of reducing the computation time of each separate process. Critical processes have been rewritten in
Assembly language, and look-up tables are used to speed up time-consuming processes. Average computing
times (in milliseconds) are shown in Table 13.

Figure 25. Simultaneous detection of the faces of two Caucasian subjects and of one Asian subject.
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Figure 27. Successive SVM-based detection, skin color-based detection, and camera-conirolled tracking of

the face of a Caucasian subject {active zoom is not performed here).
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Figure 28. Simultaneous tracking of the faces of two Caucasian subjects (without camera control).

COMPUTATION TINMIE
PROCESS (1.0 GHz Pentium PC,
320 x 240 Pixel Images)
Edge Detection
Monochrome Imnge 10 ms
Color Gradient 30 ms
Face Detection
Color Space Conversion 3 ms
Segmeniation + Blobbing Ems =X =< 15 ms
Face Detection (per Blob) (FMMVIs) 3 ms
Blob Size Normalization
(per Blob) e
Color-based Face Detection = Z0 ms
Face Detection with SVs 20 ms
Face Verification with SWVhs = 20 m=
Tracking
Mean-Shilt Tracking = 20 ms=s
Feature Tracking = 30 ms=
Fac
(Eigenlface-based) = 20 m=
{depends on the Databasec)
Camera Control =1 ms
Hand Posture Recognilion
{(with the Phase-COnly = 1= ms
Correlation Filter)
(depends on the Database)

Table 13. Computational cost of the different processes implemented in the DRUIDE system, in milliseconds.
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Our current work consists in widening the set of basic functionalities of the DRUIDE systemn, by
integrating tasks such as face direction estimation, gaze detection, and a combination of tracking with stereo
information to increase the robustness to occlusions and the volume of sensed space. More generally, the
fusion of information extracted from videos and the use of evolutionary techmiques in order to increase the
robustness of the system as a whole, as well as platform interoperability, are important aspects of future
research. Within this framework, rapid advances in computing power are to enable DRUIDE to run in real-
time while integrating algorithms of significantly increased complexity. Finally, although the primary focus of
DRUIDE is human faces and hand postures, its ultimate goal extends beyond human-computer interactions,
‘to also encompass in future work the adaptive detection, tracking and recognition of various objects under

unconstrained scene conditions.
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