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For a system-level understanding of living cells, a quantitative representation of these systems invoiving
mathematical models and corresponding computer tools is required. Our approach focuses on a modeling
concept which relies upon modular structuring of cellular systems oriented strongly at the biomolecular
structure of these systems. Mathematical submodels for functionai units comprising metabolism and regu-
fation can be aggregated in a hierarchical way to obtain more complex modules. In the Virtual Biological
Laboratory, the process modeling tool PROMOT contains an object-oriented knowledge base with reusable
modeling entities and enables a purely symbolical model building process via a graphical user interface.
The simulation environment Diva then uses the model library for dynamic simulation, parameter estimati-
on and model analysis. Two examples for models of complex regulatory networks in Escherichia coli and
in Saccharomyces cerevisiae are given to demonstrate the usefulness of the approach. It can provide a

tramework for straightforward development of virtual representations for cellular systems.

Introduction

Although being one of the most important challenges in modern biology, a system-level understanding
of how cells and organisms function is very rudimentary. This results mainly from two reasons: The
overwhelming part of experimental investigations can be characterized as qualitative and descriptive,
directed towards understanding of biomolecular details. The concomitant lack of quantitative data will
certainly be reduced by further development and wider application of massively parallel experimental
methods in functional genomics and proteomics [20, 12]. Furthermore, due to the complexity of cellular
systems even the (nearly) complete measurement of the systems’ states per se will not enable an
integrated understanding of alf relevant functional connections and their influence on the observable
behaviour {4].

Recent efforts for a system-level understanding in biology rely on interdisciplinary approaches combi-
ning concepts from biology, information sciences and systems engineering. They especially stress the
importance of mathematical modeling of complex biological systems in order to come to a virtual repre-
sentation of cells and organisms. In the end, this representation should allow for computer experiments
similar to experiments with real biological systems. Thus systematic testing of biological hypotheses as
well as purpose-driven design of cellular functionality are perspectives of these approaches [4, 18].

The use of mathematical models including the development of computer tools for model formulation and
simulation has been demonstrated by e.g. Tomita et al. [19] who were able to establish a hypothetical cell
comprising 127 genes. Schaff et al. [14] follow comparable approaches in the development of a "Virtual
Cell” . However, two major challenges for application of mathematical concepts in the life sciences still
have to be resolved: (i) the work on a conceptional framework promoting interdisciplinary research in this
direction by finding a "common”, non-mathematical language and (i) a clearly defined modeling concept
adapted to cellular systems that allows for easy model development and interpretation [18].
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Focusing on the internal structure of cellular systems, one central, increasingly accepted notion is that
these systems are composed of "functional units’ or ‘modules’. In this respect, biological systems are
more closely related to synthetic, engineered systems than to e.g. physical systems [4, 8]. Therefore, a
promising way to come to a system-level understanding of cells and organisms is to extend successful
theoretical concepts established for the analysis and synthesis of complex technical systems [2] to bio-
logical systems.

On this basis we are currently developing a system- and signal-orientated modeling concept for cellular
systems. It relies on the modular structuring of these systems and a systematic representation of biomo-
lecular components in modeling objects. The modeling concept will be outlined in the foilowing section.
Afterwards we provide a short sketch of the nature of interdisciplinary research to be carried out to esta-
blish a "Virtual Biological Laboratory”. The usefuiness and validity of the approach will be demonstrated
by two examples of cellular functional units: the system controlling catabolite repression in Escherichia
coli and aspects of a complex regulatory network involved in cell cycle regulation in budding yeast.

Modular modeling concept

The notion of a living cell being composed of subunits of limited autonomy (functional units) plays a
prominent role for the modular modeling concept. For the mathematical modeling of cellular systems,
this modular structure raises the possibility to independently develop mathematical models for each of
the functional units. Submodels as entities in the "mode! world” hence correspond to functional units
in the "real world”. The submodels can afterwards be connected to obtain a description at the system-
level. As this approach depends on the identification of functional units, one important question is how
to demarcate these units, i.e. how to decompose a compiex cellular biochemical network.

At a very abstract level, a cell can be divided into two general subnetworks, a regulatory network and
a metabolic network [7] as shown in Fig. 1. These networks possess very different characteristics: The
metabolic network is mainly occupied with substance transformation e.g. to provide metabolites and
cellular structures. In many cases it involves fast biochemical reactions. The regulatory network’s main
task is information processing in order to e.g. adjust enzyme concentrations to the requirements of va-
riable internal and external conditions. This network involves the use of genetic information. Compared
to information flow, mass flow only plays a subordinated role in the regulatory network. In this sense,
the regulatory network is superimposed to the metabolic network, fulfilling functions analogous to a con-
troller in a technical process. The interaction between both networks is necessarily bound to substance
exchange due to the requirements for precursors and proteins. However, the main connections consist
in directed signal flow, i.e. sensor signals (e.g. generation of second messengers) and control action
(e.g. adjustment of enzyme concentrations).

One important feature of the regulatory network is its hierarchical structure, which has to be considered
for the system-level description of living cells. As shown in Fig. 1 for transcriptional regulation in budding
yeast, the system’s possible behaviour on a lower level is constrained by regulation at higher levels.
The presence of RNA-Polymerase e.g. offers a wide variety of different gene expression patterns, but
the actual gene expression is adjusted by combinatorial control involving associated factors and specific
transcription factors. Including these components in the modeling process hence resuits in detailed
(and more complex) mathematical models. It also explicitly considers system-wide coupling of cellular
regulation and enables the exploitation of hierarchical network structures for mode! reduction {7].
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Fig. 1: Structural decomposition of cellular systems (I): Regulatory network and metabalic network (left) and hierar-
chical structure of the regulatory network exemplified for transcriptional regulation in budding yeast (right).

Each functional unit has to be composed of a part of the metabolic network and a corresponding part of
the regulatory network. For the demarcation of functional units (or modules), we use a preliminary set
of three, biologically motivated criteria. To be (relatively) self-contained, the modules have to (i) perform
a common physiological task as e.g. represent a linear pathway for amino acid synthesis, (ii) to be
controlled at the genetic level by a common regulatory network and (iii) to posses a common information
pracessing (signal transduction) network. The essential feature of the approach is the combination of
classical concepts in the analysis of metabolic systems with a signal-oriented perspective to cellular
regulation. Distinct to our approach, several authors adressed the question of demarcation in a more
quantitative, flux-oriented way regarding either metabolic pathways {13, 16, 15] or intracellular signal
processing networks [5, 17]. As systematic investigations on larger modular systems like the work by
van der Gugten et al. [21] are only at the beginning we use this heuristic way of demarcating functional
units. Further work on these theoretical questions will clearly be necessary to come to a more stringent
formulation of the above cited criteria.
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Fig. 2: Structural decomposition of cellular systems (I1): Example for hierarchical nesting of modules
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The application of these criteria enables to structure an entire cellular system and therefore means a
holistic approach to cellular function. Depending on the desired degree of resolution of subsystems, it
offers a flexible description of hierarchically nested modules (Fig. 2). An enzymatic reaction in glycolysis
belongs accordingly to the functional unit "glycolysis” which in turn is part of the larger unit "catabolism”.

Our modular modeling approach involves the systematic representation of the above identified biological
functional units in submodels {(modeling objects). These modeling objects are characterized along two
coordinates: They have structural properties representing the number and types of inputs and outputs.
Additionally, they are assigned behavioural properties, i.e. mathematical equations describing the dyna-
mic behaviour. Depending on the modeling objectives these equations include e.g. algebraic equations,
ordinary or partial differential equations (ODEs / PDEs). As the modeling approach aims at a consistent
link between macroscopic and microscopic dynamics, special attention is given to provide a realistic
description of the molecular interactions governing each of the regulatory mechanisms under considera-
tion. Often the mathematical equations as the "core” of each modeling object are therefore derived from
elementary chemical reaction networks applying chemical kinetic theory (detailed models). To allow for
an adjustable degree of model accuracy as well as for efficient simulation, model reduction e.g. via quasi
steady-state assumptions is carried out where appropriate. Furthermore, each modeling object is assi-
gned a specific symbolic representation which guarantees a high degree of biological transparency by its
modular structure. This is especially important to facilitate interdisciplinary discussions on the underlying
biological structures and mechanisms.
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Fig. 3: Hierarchy of elementary modeling objects for cellular systems. Substance exchange is marked by bold lines
whereas arrowheads are used to indicate signal connections.

At the most fundamental level, a finite and disjunct set of so-called "elementary modeling objects” (Fig. 3)
has been defined. They are used to represent substance formation, degradation and storage as well as
the corresponding signatl transformation processes as in the control of transcription initiation via specific
DNA-protein interactions. The organization of these modeling objects in an object-oriented class hierar-
chy lays the basis for computer-aided mode! development as described in the next section. Elementary
modeling objects can subsequently be interconnected to form higher aggregated structures. A mode-
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ling object for gene expression e.g. comprises transcription and translation. In summary, this approach
enables to progressively obtain a hofistic description of more complex functional units.

The Virtual Biological Laboratory: An Outline

One main purpose of the Virtual Biological Laboratory is to enable computer experiments with ceilular
systems in analogy to experiments carried out with real biological systems in the laboratory. Applications
include the quantitative and qualitative analysis of overall behaviour, systematic design of functional units
by genetic modifications and the systematic planning of real laboratory experiments. The Virtual Biologi-
cal Laboratory has to integrate mathematical models with a sound biological background and methods
for data storage, computer-aided modeling, simulation and model analysis in a software tool (Fig. 4).
Accordingly, the development of such a tool requires the close cooperation of biologists, information
scientists and system scientists.
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Fig. 4: Elements to be integrated into a Virtual Biological Laboratory.

The necessity of contributions by each of the three disciplines arises also from the fact that model deve-
lopment has to be understood as an iterative process leading to a maximal convergence of "model world”
and "real world". It aiways requires a careful evaluation of all hypotheses and assumptions by comparison
with experimental data. To provide these data and to develop methods for specific perturbation of cellular
processes are two of the main tasks of biology. Information science is needed for database design inclu-
ding a systematic representation of experimental and kinetic data, the development of computer-based
modeling tools and finally the implementation of visualization techniques. The system sciences primarily
have to provide theoretical methods for e.g. demarcation of network structures, system-level analysis
and synthesis.

The Virtual Biological Laboratory is currently under development and major parts of it have already
been established: The process modeling tool PROMOT, originally designed for application in chemical
engineering, allows for the computer-aided development and implementation of mathematical models
for living systems [3]. The mode! building process supported by PROMOT consists of the hierarchical
aggregation of structural and behavioural modeling entities according to the modeling concept descri-
bed in the previous section. The differentiation of modeling objects into structural modeling entities and
behavioral modeling entities allows for systematic model-building in a two-step process. Model structure
and e.g. kinetic equations can hence be handled independently. PROMOT also enables the implemen-
tation of a flexible, object-oriented knowledge base containing reusable modeling entities. Using the
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knowledge base, modei formulation means the selection and linking of pre-defined modeling cbjects via
a graphical user interface. In this respect the Virtual Biological Laboratory differs significantly from other
biological simulation environments like E-Cell [19]. Speed and easiness of model development - even
without knowing exactly about the underlying mathematical formulations - are thus greatly increased.

Mathematical models generated using PROMOT can be directly added to the modei library of the si-
mulation environment DIvA [9, and refs. therein]. This simulation tool has been designed especially for
dealing with large-scale dynamical (differential-algebraic) systems, which arise in chemical engineering,
but also in the mathematical modeling of complex cellular networks. State-of-the-art numerical methods
integrated in DivA include dynamic and steady state simulation, mode! optimization, parameter estima-
tion and numerical analysis e.g. by methods of nonlinear dynamics.

The combination of PROMOT and Diva is therefore well suited to form the core of the "electronic infra-
structure” of a Virtual Biological Laboratory. Examples for the content of the Virtual Biological Laboratory
will be given in the following two sections. We present signal-oriented models for catabolite repression
in E. coli and for aspects of cell cycle regulation in budding yeast, respectively.

Example: Catabolite repression in E. coli

In bacteria the expression of carbohydrate uptake systems and metabolizing enzymes is very well con-
trolled in order to avoid the useless expression of proteins. For growth, some carbohydrates are preferred
to others, resulting in the sequential use of different carbohydrates in mixed cultures. The best examined
example of this phenomenon is the diauxic growth of E. coliin cultures with glucose and lactose [11]. Dif-
ferent regulatory proteins contribute in controlling the expression of the corresponding operons and the
activity of carbohydrate uptake systems. Being extensively studied over the past years, glucose-lactose
diauxie of E. coliis a perfect model system of complex regulatory networks.

The regulatory proteins involved in glucose-lactose diauxie in E. coli influence the expression of the lac-
tose metabolizing enzymes. The lactose repressor, Lacl, is able to bind to a control sequence in front of
the lac operon in the absence of lactose, thereby inhibiting transcription from /acZp. This repression is
relieved in the presence of allolactose, the natural moiecular inducer of the /ac operon. In a side reaction
to the cleavage of lactose into glucose and galactose, allolactose is produced by 3-galactosidase, enco-
ded by the gene /acZ. This specific control hinders the expression of the lactose metaboiizing enzymes
in the absence of their substrate lactose. Additional control is exerted by the Crp protein. This protein is
active in the regulation of a number of operons, most involved in the quest for food. The Crp protein is
able to form a complex with cAMP, that acts as a transcriptional activator for the /ac operon as well as
for the other members of the crp modulon.

The concentration of the alarmone cAMP inside the cell is regulated by complex mechanisms. These
mechanisms are basically understood, but despite many well-established details some questions re-
main. Central in its regulation is the action of the phosphoenolpyruvate-dependent phosphotransferase
systems (PTSs), especially the glucose PTS. If the PTSs are not active in the uptake of substrates, the
PTS proteins including Crr which acts as the EllA in glucose transport accumulate in their phosphoryla-
ted form. Crr-P is needed for the activation of the enzyme adenylate cyclase (CyaA) that converts ATP
into CAMP. Only in the absence of PTS substrates or their transport respectively an activation of CyaA
is hence possible. This leads to an increased level of cAMP inside the cell and in the formation of the
cAMP.Crp activator complex. As a result operons like the /ac operon that depend on the Crp.cAMP com-
plex for transcription can only be expressed if no PTS-substrates are present. Vice versa PTS-substrates
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Fig. 5: Catabolite repression in E. coli : Model structure (left) and simulation results for wild type and mutant strain
(right).

in the medium repress transcription of the members of the ¢rp modulon. This regulation has therefore
been termed catabolite repression. The glucose PTS is also active in regulating the activity of the lactose
permease, LacY, another important factor in the formation of diauxie. The unphosphorylated form of Crr
is able to form a complex with LacY thereby inhibiting uptake of lactose from the culture medium. This
interaction prevents the entry of lactose into the cell and the formation of allolactose. This phenomenon
is referred to as inducer exclusion.

A mathematical model describing carbon catabolite repression was developed and validated with a
set of experiments (Fig. 5). Here, isogenic mutants, i.e. strains derived from one wild type strain with a
defined mutation in the signal transduction pathways, were constructed [6]. In the experiments the media
composition as well as the preculture conditions were varied. After parameter analysis and estimation,
the time course of the simulation and the experimental data agree very well.

Example: Cell cycle regulation in budding yeast

in all eukaryotic cells the cell division cycle is characterized by a fixed sequence of cell cycle phases
(Fig. 6), during which the main cellular tasks are switched from simple mass growth (G1 phase) to DNA
replication (S phase) and finally to chromosome separation and cytokinesis (G2 /M phase). In response
to multiple internal and external signals, the sequence is mainly controlled by cyclin dependent kinases
(CDKs). They are activated by phase-specific cyclins forming distinct kinase complexes with different
functionality. Even in the relatively simple yeast S. cerevisiae, one catalytic subunit (Cdc28) and nine
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Fig. 6: Cell cycle regulation in Saccharomyces cerevisiae : Main cellular tasks in specific ceil cycle phases, check-
points, DNA-content, cell cycle regulators (upper left), corresponding cyclin concentrations (lower left) and model
structure for description of the G1 / S-transition (right)

cyclins (CIn1-3/ Clb1-6) are involved in cell cycle regulation [10]. The phase-specific cyclin fluctuation in
this organism relies upon such diverse processes as regulated transcription of cyclin genes, constitutive
or controlled protein degradation and specific inactivation of Clb-CDKs via the CDK inhibitor Sic1. All
regulators are embedded in a highly interconnected network including positive and negative feedback
loops [10]. Additionally, cell cycle regulation in budding yeast does not only serve as an example for
a complex regulatory network. It also involves many of the known regulatory mechanisms at the DNA,
mRNA and protein levels which generally have to be accounted for during model development.

In the cell cycle, the G1/S-transition plays a crucial role, because at this boundary — via the associated
checkpoint called "START” — the cells ultimately have to decide whether to undergo a new round of
replication and division or not. The accumulation of sufficient cellular material i.e. the attainment of a
critical cell size constitutes the major prerequisite for this transition [10]. At the molecular level, the tran-
sition is governed by an approximately constant level of CIn3, which surprisingly results in the sudden
activation of a transcription factor composed of Swi4 / Swi6. In this way the production of G1 cyclins
Cin1/2 induces the transition to S phase. Whereas these regulatory mechanisms are well established,
finding a consistent expianation for the sudden appearance of G1 cyclins as a function of cellular grow-
th is complicated [10]. To quantitatively analyze the system’s dynamics, a submodel was formulated
according to the modeling concept outlined above. Its structure, which is based solely on the known
regulatory mechanisms, is shown in Fig. 6. Special attention was given to incorporate the interaction
between regulatory processes at the DNA as well as at the protein level.

Several conclusions regarding the character of the G1 / S transition can be drawn from the simulation
results (Fig. 7): Although being held at approximately constant concentration, CIn3 is able to drive the
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Fig. 7: Simulation results for regulation of the G1/ S transition: Protein concentrations of G1 cyclins, CDK inhibitor
and transcription factor Swid (left) and transcriptional regulation of the CLN1/2 genes (right).

transition as a function of cellular growth. Mechanistically, the control of CLN1/2 transcription via Swi4/6
plays a prominent role in this process. Due to several positive and negative feedback loops, the system
behaves as a switch function as soon as a Cln3 threshold is reached. The known regulatory mechanisms
therefore sufficiently explain the behaviour observed in vivo. Differing from a published mathematical
mode! of cell cycle reguiation in budding yeast [1], our (partial) model is based on the deduction of
dynamic properties from a more detailed description of regulatory mechanisms: Without implementing
e.g. an ultra-sensitive switch function for the activation of the transcription factor SBF, this behaviour
resuits from an interplay of regulated gene expression, phosphorylation / dephosphorylation reactions
and cooperative binding to multiple sites on the DNA.

Conclusions

Finding concepts to deal with the complexity of living systems represents the major challenge on the
way to a system-level understanding of cells and organisms. In this contribution, we present a frame-
work which is derived from concepts in engineering science and systems theory. It essentially relies
upon the modular mathematical modeling of the overail behaviour of cellular functional units. The de-
composition of cells into such units is oriented at the modular biomolecular structure of cellular systems.
This demarcation also represents the most crucial aspect of the modeling concept as mainly heuristic
criteria are applied at the moment. In the future, theoretical work in this area will be intensified taking into
account recently published concepts by other groups. Finally, the modeiing concept should guarantee a
high degree of biological transparency and promote the interdisciplinary cooperation between biologists
and system engineers.

A long-term perspective of our work is the establishment of a Virtual Biological Laboratory combining
mathematical models of cellular systems with tools for their efficient development, simulation and ana-
lysis. The purpose of this laboratory is to enable computer experiments with cellular systems similar to
the analysis and design of cellular systems in the “real” world. One milestone in reaching this aim is
the development of process modeling and simulation tools forming the "core” of the Virtual Biological
Laboratory. As we have shown, computational tools like PROMOT and Diva are already available and
allow for a straight-forward realization of the modular modeling concept outlined in this contribution. For
two small example systems, we showed a systematic formulation of mathematical models based on
(structural) biological knowiedge. This can lead to an adequate description of experimentally observable
cellular behaviour and to new insight into how cellular biochemical networks operate.

For the system-level description of more complex systems, even of a simple bacterium like E. coli, an
intensified cooperation of biclogy, information sciences and systems sciences will be essential. However,
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regarding the modular structure of cellular systems, there exists a realistic perspective of coming to a
virtual representation of real cellular systems by cooperation and division of labour.
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