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1. Introduction

Well-made biomachines such as animal body, bee (eu-)society [ = bee super-
organism (SO) ], and intra-ceilular genetic apparatus could have most plausibly
emerged by hierarchical sociogenesis of lower-level individuals (which are unicell
animals, bee individuals, and tRNA ribo-organisms (RO), respectively) [Ohnishi,
1993a,b,c; Ohnishi et al., 1999 ]. Both bee SO and animal body are altruistic kin
society consisting of fertile queen individuals ( queen bees, germ line uni-cell
organisms ) and worker individuals (worker bees, somatic line uni-cell organisms),
where altruism has evolved by kin selection [Hamilton 1964; Ross & Mathew 1989 ].

In the emergence of protein-synthesizing / genetic machine, early RNA replicator
ROs would have evolved to be early tRNA ROs whose life cycle consists of tRNA-
phase and tDNA-phase. Such early tRNA individuals would have associated together
to make a co-operative tRNA society in which some of them would have co-opera-
tively behaved to other tRNAs, and have began to behave as earliest mRNAs which
assisted tRNA’s peptide-synthesis (Ohnishi, 1993 ; Ohnishi et al., 1999).

2. Origin of mRNAs and Genetic codes

As shown in Fig.1 [A] [B], the RNA transcript from the Bacillus subtilis trrnD-
operon has a structure of tandem arrangement of 16 tRNAs (trrmD-poly-tRNA) , and
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Fig. 1. A poly-tRNA model for early peptide-synthesis and the emergence of a trraD-type
primitive mRNA (zrrnD-mRNA) from tRNAGly. The model in [B] shows how primitive
tRNAGly could have converted to be an carliest nRNA (zrrnD-mRNA) by interactions of tRNA
replicator ribo-organisms. Poly-tRNA = poly-tRNA region of the RNA transcript from the B.
subtilis trrnD operon shown in [A). ; trrnD-peptide = a hypothetical early 16-amino acid-peptide
whose aa sequence is in the same order of the 16 aa specificities of the 16 tRNAs in this operon. ;
trrnD-mRNA = a hypothetical early 48-base mRNA complementary to the 16 anticodons of the
16 tRNAs. ; tRNAGly = tRNAGly gene in the B. subtilis trrnD operon. ; phospho-glycerate
transporter protein B = pgtB gene-encoded protein in S. typhimurium. GlyRS = glycyl-tRNA
synthetase O subunit (GlyS gene) in E. coli.
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Fig.2. Alignment of the E. coli (EC) glycyl-tRNA synthetase (GlyRS) alpha subunit gene (GIvS
), the Svnechococcus sp. Fo-ATPase a subunit gene (a ). and the Salmonelia rvphimurium
phospho-glycerate transporter protein B gene (pgtB) against the poly-tRNA region (tRNAHis-
GIn-Gly-Cys-Leu-Leu region) from Bacillus subtilis (BSU)trrnD operon. Amino acid sequences
of the Synecho-coccus sp. Statistical evaluation of base-match levels was made by computing
Pauc(m,n)=Z Cqj(1/4) i (3/4)“'I (where C nj=n!/[i!(n-i)! ], and £ denotes summation
over i = m to n ), which denotes matching probability by chance giving the observed m or more
base-matches in the n-base alignment. Data are from GenBank Database. Base-matches to the
trmD poly-tRNA region and deduced amino acid matches to GlyRS are boxed. Base and amino
acid matches to GIvS / GlyRS are boxed, and/or indicated by "+".
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{ 1] Hierarchical Altruistic Behavioral Network of Queen and Worker
Kin Individuals ( Bee Super-Organism and Muliticellular Animal-body )
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Fig. 3. Leaning-neural network models I and I for sociogenesis and bio-machinogenesis.

is considered to be a relic of early RNA-machine for making a hypothesized "trrnD-
peptide”,whose amino acid (aa)-sequence is in the order of the aa-specificities of the
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16 tRNAs in the rrnD-poly-tRNA.  Early tRN AGly (of the poly-tRNA) would have
interacted with the 16 anticodons of the poly-tRNA (in way of two by two on the
primitive A and P sites of early ribosome consisting of three rRNAs made by the

operon), and the base-complementarities between tRNA(Gly) and (presumptive)
anticodons could have been selected throughout evolution.  Relics of the
hypothesized trrnD-mRNA (comple-mentary to 16 anticodons) are significantly
homologous to the DNA sequence encoding  trrnD-peptide-like regions of 3-
phospho-glycerate transporter protein B (pgrB) and glycyl-tRNA synthetase (GlyRS)

o subunit (Fig. 1, [B], Fig.2). The six-tRNA- region ( tRNA IS Oln-Cly-Cys-Leu-Leuy ;o
homologous to the DNA region en-coding the aa’s 85-303 of the E. coli GlyRS o
[Ohnishi 1993c]. Fo-ATPase a subunit and pgtB gene were also aligned against GlyS
gene and the trrnD-poly-tRNA region (Fig. 2) . An prokaryotic ribosomal RNA, 16S
rRNA, was also found to show signi-ficant level of base-sequence similarity to the

tRNAGly'CyS-Leu region, as shown also in Fig. 2. Statistical evaluations of base-
match-levels elucidated that the aligned paires in in Fig. 2 are mostly based on
genuine homology relationship.

Conptemporary tRNAs seem to well conserve early characteristics of primitive
tRNAs, whereas other RNAs (mnRNAs, rRNAs, M1 RNA.) would have rigourously
changed their own structures and functions [Ohnishi et al. 1999]. It would be rather
reasonable to say that mMRNA/mDNAs and rRNA/rDNAs are worker-like (wl-) ROs
derived from (poly-)tRNA-ROs, whereas contemporary tRNAs /tDNAs are queen-
like (gl-) tRNA ROs. However, the most important difference between the queen-
worker-type eusociety [ bee SO (= eusociety) and animal body] and the intracellular
hierarchical (t)RNA society is that gl-tRNAs and wi-mRNAs both replicate in their
DNA-phase, meaning that both types of RNAs are fertile replicators. What are the
major logical and evolutionary differences between these two types of hierarchical
sociogenesis which seems to have made themselves weli-made biomachines ? This
question will be discussed below from a viwpoint of the genesis of self-learning
neural network (NNW) machine.

3. Neural-network-like DNA-information flow in behavioral
network of hierarchical societies

A possible answer to this question would be that hiearchical altruistic behavioral
and DNA-information-flow networks could make a (self-)learning-NNW machine
shown in Fig.3 {I].. The major features of the NNW are as follow ; (1) Workers are
units of an input-layer of NNW, and queens are unit(s) of an output-layer. (2) Final
output of the NNW-machine (NNWM) is queen’s outputs of DNA-information to the
next generation, based on which the next generation’s workers and queens will be
reproduced.  (3) altruistic behavioral flow from workers to queens, where the
behavioral flow is partially equivalent to DNA flow from workers to queens (because
altruism increases final DNA-output from queens to the next generation, and the
queen’s DNA informa-tion share a great portion ( r ) of DNA sequences with workers
of this kin society, i.e., r=23/4in bee eu-society and r = | in multicellular animal
body.), where r denotes ‘co-efficient of (genetic) relatedness’ [ Hamilton , 1964].
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(4) The final DNA-output from queen to the next generation is achieved via
"gametes" (i.e., newly grown queen bees in bee-SO, or ovum in animal body).
(5) Therefore, the DNA-flows (3) and (1) make a feedback DNA-flow from
"queen(s)" ( of the previous generation ) to "workers" (of the present generation), or
else, from "queen-niches” to "worker-niches”. (6) Another important feedback
would be "(parental) manipulation by the previous generation" exemplified by the
suppressive effect of queen-bee's (maternal) behaviour or substance(s) to worker's
fertility, and by maternal mRNA ( bicoid, nanos, and torso mRNAs ), which cause
early somatic cell differentiation in the fruitfly, Drosophila [Gilbert 1997, p.548].

These features (1)-(5) would most plausibly satisfy the conditions by which the
kin societies could evolved as learning neural-network machines (L-NNWMs)
(Dracopulos, 1997) capable of self-improving in every generation towards bio-
machinogenesis. The teacher signal of such L-NNWM would probably be possessed
by the own NNW system itself, since every element of this system is a cognitive bio-
individual. This means that the L-NNWM would work as a self-leaming NNWM
capable of self-improving in every generation.

In case of hiearchical ()RNA (RQ’ic) society consisting of ql-tRNAa and wi-
RNAs, the relatedness of ROs is not so strong as can be seen between queen and
workers in hymenopteran eusocieties or in clonal kin unicell society making animasl
body. The DNA-information flow in the qi-/ wi- hierarchical RNA society is
schematized in Fig. 3 [I1]. In the Fig. 3 [[] case, the DNA flow from worker to the
next generation can be achieved by high genetic relatedness and altruistic behaviour
would efficientle evolve. However, in the case [II], wl-RNAs also output their own
DNA information to the next generation via their own DNA-replication. Since wi-
RNAs are fertile (i.e., replicable in their wl-DNA phase), hierarchical machinogenesis
will not successively evolve unless some appropriate control of wl-RNA’s behaviours
by ql-tRNAs. TRNA genes (tDNAs) would most plausibly be more important and
essential than other DNA genes in initiating DNA genome replication. The feedback
control of wl-individuals' DNA information seems to be achieved by the mode of
DNA replication. The wl-DNAs do not replicate independently of ql-DNA’s replica-
tion, but replication of all DNA genes occurs as a replication of the whole genome
DNA(s). Such simulta-neous replication of all wl- and ql-DNAs finally makes a
DNA-information-flow network closely resembling to the case [I] model in Fig. 3.

Thus the both cases [I] and [II] are considered to generate functional self-learning
NNM. In these altruistic societies, since the value of r between worker and queen is
relatively high, the workers can output their own DNA base-sequence informations
to the next generation, not by their own DNAs, but by the DNAs of newly grown
fertileindividuals (= queens), to whom workers altruistically behave. The elements
of input and output layers in this system are cognitive bio-individuals. This means
that the L-NNWM would work as a self-learning NNWM capable of self-improve-
ment in every generation throuout evolution.

4. BPM Computer-Simulation of a learning-NNW model

In order to analyze learning process of the NNW-model I in Fig. 3, a simple
computer simulatoion was made by BPM [Rowe 1997]. A most simple two-layered
hierarchical L-NNW consisting of one queen ( an output-layer unit ) and two workers
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is givenby dy = h(zg), and error function is given by E( ¢ ) = (1/2) (x; - dy) 2
Connection weight at ( t + [ )-th time is modified by

o D) =ci(!)_ (1-a)n [9E/ 3¢, + a(ci(t)-ci(t * V) [Eq.2)

1
where o (L) is an item of inertia. Repetition of computation by [Eq. 2] was
continued up to t =t.4, where E( M )< 10'6. Simulation for 40 trials by [Eq.
2], employing a=02, $=20, andn= 30, resultedin [mean * S.D.

of t,,g1=23.5 +13.1, meaning thatlearning for descriminating category 1 and
2 was very rapidly achieved. Thus it is concluded that even a simplest two-layerd
NNW can work as a L-NNWM capable of achieving an efficient linear-division
recognition.  In real case of the NNW-model I (in Fig. 3), every units in both layers
are biotic individuals which themselves are most plausibly L-NNWMs. Since the

teacher signal, d,, can be considered to be possessed by the biotic individuals (queens
and/or workers), the L-NNW would most plausibly function as a self-larning
NNWM. Thus the queen-worker-type NNWM is concluded to have been made by
self-improving and self-making based on the function of the self-learning NNW.
Accordingly, even if mutations occur randomly, mutated genes which are more
adaptive would have been actively selected by the self-leaming NNWM.  Essential
basic similarity between model [ and model 11 in Fig. 3 suggests that genetic
apparatus would have been made in essentially similar evolutionary logic. The self-
learning NNWs in | and Il in Fig. 32 strongly suggests that machine-making by self-
learning and self-machinogenesis throughout evolution in NNW-models I (or Il ) isa
kind of generalized "thinking” process. Human thinking by brain ( which is often
accompanied by "conciousness" ) is a special case of these generalized thinking
phenomena. These results coinsides well with the previously proposed concept of
"generalized thinking” and "generalized culture” [Ohnishi 1990].  Further discus-
sions from the aspect of generalized semeiology is given in Ohnishi et al., 2000a,b.
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