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Abstract

It has been shown that PER and TIM play a crucial role in the gene network to
generate the circadian thythm of Drosophila. They make heterodimers and inhibit the
transcriptions of their own in nucleus. Leloup(1998) proposed several mathematical
models for this phenomenon, and analysed them by numerical simulations. He
claimed that the model in which PER-TIM complex regulates the transcription of both
of their genes is easier to generate a stable oscillation than the model in which only
PER does feedback control, as the parameter region for oscillation is larger in the
former model than in the latter. In this paper, we present 3 simple models and
compare the condition for generating a limit cycle. We introduce a parameter
"cooperativity" indicating the degree of non-linearity in the gene transcription term.
We found that a larger cooperativity generally tends to lose the local stability of
equilibrium point and generate a limit cycle in all of the three models. Compared
with "three variables model” (per mRNA, PER in cytosol, and PER in nucleus), "four
variables model" ( PER is modified before entering the nucleus) can generate a stable
oscillation with a smaller cooperativity. Compared with these, our "PER-TIM model”
can also generate oscillation with a smaller cooperativity. They show that the
modification and heterodimerizaion of proteins are important to generate a limit cycle.
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Introduction

Circadian rhythm is widely observed phenomena at various species and
molecular mechanism of it is getting clear. It has been shown that these thythms are
autonomous and are generated by the circadian oscillations of the amount of the
specific proteins in each cell. The per and tim genes of Drosophila commonly have
elements of the transcriptions, CLK and CYC and they synthesise PER and TIM
proteins. These two proteins make heterodimers and inhibit the transcriptions of their
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own in nucleus, presumably inactivating the CLK-CYC heterodimers. This negative
feedback is thought to generate the circadian rhythm of Drosophila.

Leloup proposed several mathematical models for circadian rhythm in
Drosophila incorporating the formation of the PER-TIM complex and analysed them
by numerical simulations (Leloup, 1998). He claimed that the model in which PER-
TIM complex regulates the transcription of both genes is easier to generate a stable
oscillation than the model in which only PER does feedback control, as the parameter
region for oscillation is lager in the former model than that in the latter.

From the dynamical point of view, we have to consider the following two
problems. First, is the modification of protein in cytosol necessary in order to
generate a limit cycle? Second, why does genetic network of circadian rhythm of
Drosophila consist of two genes, per and tim ? In this paper, in order to consider
these two problems, we present three simple models, and analyse them in detail. The
models have single non-zero equilibrium point. A limit cycle occurs when
equilibrium point is locally unstable and system is globally stable. We studied
whether it can occur or not in each model by analysing the local stability of
equilibrium point. Although some theoretical analysis for simple model of circadian
rhythms has been done (Griffith, 1968), our study is the first to compare the condition
for generating a limit cycle between different models by theoretical method. We also
studied whether stable oscillation can occur by numerical simulation where unstable
equilibrium point can be found.

We studied three different models, "three variables model” (per mRNA, PER
in cytosol, and PER in nucleus), "four variables model” (PER is modified before
entering the nucleus), and "PER-TIM model" (PER and TIM protein make
heterodimers before entering the nucleus). We use two types of reaction term in each
model. First, transcriptional inhibition by protein binding is expressed by Hill type
equation. Second, the other reaction terms are proportional to the amount of
substrate.

We prove that equilibrium point is stable when n is very small. We could
also show that equilibrium point can be unstable when n is larger than threshold.

By numerical simulation, we show that equilibrium point is unstable and a limit cycle
occurs when n is large.

Models and Results
"Three variables model"

First, we consider simplest model for gene regulation of per, which includes
only three variables, the level of per mRNA, that of PER protein in cytosol and that of
PER protein in nucleus. The amount of mRNA increase by the transcription and
decrease by the enzymatic degradation. The amount of PER protein in cytosol
increase by the translation and decrease by the transportation into nucleus and the
degradation. The amount of PER protein in nucleus increase by this transportation
and decrease by the reverse transportation into cytosol. In nucleus, this protein
inhibits the transcription of its own. We call “n” in transcription term "cooperativity”,
which indicate the degree of non-linearity of the inhibition. The A is the threshold
constant of that reaction.

aM 1

e ——— —aM 1.
dt 1+ By “ (12)
éE:M—(d+u)R+vP (1.b)
dt
i}—)=uR—vP : (1.c)
dt
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. where M is concentration of mRNA and R and P are that of PER protein in cytosol
and in nucleus, respectively. The a and d are rate of degradation and u is rate of
transportation of R into the nucleus and v is that of P into the cytosol.

Small "n", generating stable equilibrium

By focusing on small perturbation about the equilibrium, we can linearize the
dynamics and know the dynamical stability of the equilibrium points. The stability is
shown by the sign of the real part of the eigenvalue of the matrix showing the
linearized dynamics. When it is negative, the point is locally stable and cannot
generate a limit cycle. However when it is positive, the point is not locaily stable and
the model can generate a limit cycle. We also studied by numerical simulation later
whether the model actually generates a stable oscillation or not under this condition.

The eigenvalues of this model satisfy the equation

N +a)N +ah+a, =0 (2.2)
, where

a=a+d+u+v (2.b)

a,=ald+u)+va+d 2.0)

rl(f%)"—1
a,=adv +u——=——"—— 2.d)
w1+ (B )2

The Routh-Hurwitz conditions give the necessary and sufficient conditions for
Re A <0 in general. For cubic equation, the conditions are

a,.a,,a; >0 3.a)

aa, >a, 3.b)
We analysed this model by means of these two conditions.

The first three inequalities are always satisfied because all parameters are positive
here.

Then let us consider ag, —a, ,

n(;%)"’l

aa, —a, =(a+d+u+v)a(d+uw)+v(a+d))-(adv+u = ) 4
A

After basic calculations, we proved that the above expression is always
positive when 8 > n. Then we can conclude that the equilibrium point is stable when
8 > n without depending on parameter values.

non

Large "n", generating unstable equilibrium
When n =9, we can show that the equilibrium point can be unstable. For
example, if we assume the following

a=d=v=x,u=kx (5)

,aa, —a, can be negative when n29. Then unstable equilibrium point can exist

when n 9. We carried out computer simulation by using above condition and
confirmed that the trajectory became a limit cycle. In Fig. 1, we showed the value of
mRNA with time. In conclusion, the equilibrium is stable and there is no limit cycle
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for all the parameter value when 8 > n, and there should be at least one set of
parameter which make the equilibrium unstable when n 29.

"Four variables model"'

In this chapter, we consider a model in which PER protein is modified before
entering nucleus. The variables are per mRNA, PER in cytosol, modified PER in
cytosol, and PER in nucleus . We assumed here that PER has to be modified first
before entering nucleus. In addition to " three variables model”, we consider the
amount of modified PER. The amount of modified PER protein in cytosol increase
by the transition from unmodified PER into modified one and decrease by its reverse
transition and the enzymatic degradation.

aMm 1

—_————aM 6.
dt 1+(P/h)" a (6:2)
R M- bR+cO (6.b)
dt

%=bR—(C+d+u)Q+vP (6.c)
ﬂ):uQ—vP (6.d)
dt

,where R is unmodified PER and Q is modified one. The b and ¢ show the velocity
of reversible reactions of transition from R into Q and that of Q into R,
respectively.

We made stability analysis similarly as that of "three variables model”. We
prove that the equilibrium point is always stable when 32 n without depending on
parameter values. We could show that it could become unstable when n25. We
carried out computer simulation by using above condition and confirmed that the
trajectory became a limit cycle. The value of mRNA with time is similarly as shown
in Fig. 1. In conclusion, the equilibrium is stable and there is no limit cycle for all the
parameter value when 32 n, and there should be at least one set of parameter which

make the equilibrium unstable when n 25 . The threshold n is smaller than the
previous "three variables model.” Then we can say that "four variables model” is
more likely to generate a limit cycle than "three variables model”.

"PER-TIM model"

In above two models, we just focused on per network. However Drosophila
has also tim gene, which has the similar role as per gene acting as negative factor of
transcription of both per and zim gene. In this chapter, we consider a model in which
PER and TIM proteins make heterodimer. The dynamics of mRNA and monomers
are same as previous models. The amount of heterodimer, complex in cytosol
increase by the dimerization and decreases by the reaction of the separation of itself.
The amount of complex in nucleus increase by the transportation of complex into
nucleus and decrease by the transportation into cytosol. In nucleus this complex
inhibits the transcription of both per and tim .

M, 1

-—d.?:mﬁ/;l)—"—alMl ' (78)
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daM, 1

—d—t' = -H—(P/hT - a,._/"!2 (7b)
dR,

L= M, ~d,R~bR R, +cQ (7.0)
5’% =M, -d,R, ~bRR, +cQ (7.d)
%=leRz—(c+u)Q +VvP (7.e)
ap =uQ —vP (7.
dt

. where M; and M: are concentrations of per mRNA and tim mRNA, R: and R: are
those of PER protein and TIM protein, respectively, and Q is concentration of
cytosolic form of complex, and P is that of nuclear one. The ai, az, d: and d: are
rate of degradation. The b and ¢ are forward and reverse rate constants.

We made stability analysis similarly as that of "three variables model”. We
can't find any n that always makes the equilibrium point stable. However, we could
show that the equilibrium could become unstable when n 23 by giving a set of
parameter value. We carried out computer simulation by using above condition and
confirmed that the trajectory became a limit cycle. The value of mRNA against time
is similarly as shown in Fig. 1. In conclusion, there should be at least one set of
parameter which make the equilibrium unstable when n 23. The threshold n is
smaller than "three variables model” and "four variables model”. Then we can say
that "PER-TIM model" is more likely to generate a limit cycle than "three variables
model" and "four variables model”. Here we summarise the resuits of three models in
Table, as follows.

Table
three variables four variables PER-TIM model
n model model
1 ] S r
2 s ] 3
3 s s u,0
4 s r u
5 $ 1,0 u
6 s u u
7 S u u
8 ] u u
9 u,0 u u
s equilibrium point is always stable
u: equilibrium point can be unstable
0: stable oscillations are observed
r we can't say whether equilibrium point is always stable or can be unstable.
Caption
Figure 1: Sustained oscillation of the amount of per mRNA generated by "three

variables model"” when n =9. Parameter values are a =d =v =1, u = 0.01,
h = 0.00078 which make expression (4) negative. Number of simulation steps is
10000 and at each step time unit is 0.001.

183



mRNA

1.6

1.2

time ¢

Fig. 1

184



