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Abstract

We have developed an efficient algorithm based on the
Genetic Algorithm(GA) for optimization of a model
of a nonlinear system. Estimation of the interac-
tion mechanisms among-system components by us-
ing experimentally observed dynamic responses (time-
courses) of some of the system components is gener-
ally referred to as “inverse problem”. The S-system,
which belongs to power-law formalism, is one of the
best representations to solve such an inverse problem;
the S-system is rich enough in structure to capture all
relevant dynamics. In this paper, for the purpose of
solving the inverse problem, we introduce the GA and
propose an efficient procedure for the estimation of
large numbers of parameters in the S-system formal-
ism. We applied our method to a simple oscillatory
system and a gene expression network.

1 INTRODUCTION

In the case where the details of the molecular mech-
anism that govern interactions among system com-
ponents (state variables) are not well known, how-
ever, how do we mathematically model such com-
plex processes?; most of these processes are nonlin-
ear. Description of these processes requires a repre-
sentation that is general enough to capture the essence
of the experimentally observed response. One of the
best approaches that satisfy this requirement is the
“S-system” Savageau, 1976, Voit, 1991, Tominaga and
Okamoto, 1998) which is a type of power-law formal-
ism because it is based on a particular type of or-
dinary differential equation in which the component
processes are characterized by power-law functions;
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where n is the number of state variables or reactants
(X)), i, (1 € 4,5 £ n) are suffixes of state vari-
ables. The terms g;; and h;; are interactive effectiv-
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ity of X; to X;. The first term represents all influ-
ences that increase X;, whereas the second term rep-
resents all influences that decrease X;. In a biochem-
ical engineering context, the non-negative parameters
a; and 3; are called rate constants, and real-valued
exponents gi; and h;; are referred to as kinetic or-
ders. The simple homogeneous structure of S-system
has a great advantage in terms of system analysis and
contro! design, because the structure allows analytical
and computational methods to be customized speeif-
ically for this structure(Irvine and Savageau, 1990).
However, the S-system formalism has a major disad-
vantage in that this formalism includes a large num-
ber of parameters that must be estimated(a;, 5i,
gi; and hi;). The number of estimated parameters
in S-system formalism is 2n(n + 1), where n is the
number of state variables(X;). In this paper, we
should propose an algorithm and procedures for the
estimation(optimization) of large numbers of param-
eters (Okamoto et.al., 1997, Tominaga et al., 1996,
1999). The basic idea is as follows: the Genetic Al-
gorithm (GA)(Baker, 1985, Goldberg, 1989, Davis,
1991) as a nonlinear numerical optimization method
which is much less likely to be stranded in local min-
ima. Furthermore, in order to find the skeletal struc-
ture (small-size system) of S-system formalism that
matches the experimentally observed responses, some
of the parameters (g;; and hy;), absolute values of
which are less than a given threshold value, are to be
removed (reset to 0) during optimization procedures.
By introducing this algorithm reffered to as structure
skeletalizing (Tominaga and Okamoto, 1998, Tomi-
naga et al., 1999), that optimized essential S-system
model that matches the experimentally observed re-
sponses should be possible.

2 OPTIMIZATION TASK

When an adequate time-course of relevant state vari-
able is given, a set of parameter values a;, B, gi;
and h;;, in many cases, will not be uniquely deter-
mined, because it is highly possible that the other
sets of parameter values will also show a similar time-
course. Therefore, even if one set of parameter values
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that matches the observed time-courses is obtained,
this set is still one of the best candidates that ex-
plain the observed time-courses. Our strategy is to
explore and exploit these candidates within the im-
mense huge searching space of parameter values. In
this optimization problem, each set of parameter val-
ues to be estimated is evaluated using the following
procedure: Suppose that X, oo; is numerically calcu-
lated time-course at time ¢ of state variable X; and
X ezp.t represents the experimentally observed time-
course at time t of X;. Sum the relative error between
X; cait and X; ezpe to get the total error f

N T

f= Z Z { (Xt,cai.xtilzp‘:.e:rp.t>z} )

i1=1 t=1

where N is the number of experimentally observable
state variables, T is the number of sampling points
of the experimental data. The problem is to find a
set of parameters that minimizes f. The structure of
the genome(design code) of each individual(each set
of parameter values) in GA is shown in Figure 1. A
genome(corresponds to one individual) contains a set
of S-system parameters ( n a;s and G;s, and n x n
gi;5 and h;;s) which forms an n x (2n+2) matrix. An
individual represents one S-system model. Each small
square in Figure 1 corresponds to each parameter that
has a real value. We introduced the following coding
for representing real numbers: a 32bit unsigned in-
teger format within a given searching region, that is,
each dimensional region to be searched is divided into
232 djscrete points and is numbered using a unsigned
integer. A real value within a searching region is rep-
resented by scaling a unsigned integer with offset.

2(n + 1) columns

1 1
| n i n
II

n rOWS

Figure 1: Design code of an individual; two n vectors of
a; and 8i, and two n x n matrices of n X n g;; and h;; form
n x (2n + 2) matrix. This matrix represents one S-system
model.

2.1 GENETIC ALGORITHM

The optimization procedure in GA is as follows:

(0) Prepare a set of experimentally observed time-
course data of n state variables. The number of sam-
pling point(T’) is common for each state variable. De-
termine the number of individual P, maximum limit

of generation Gmgz, search regions for a;(;3;) and
gi;(hi;), initial mutation rate mo, and the threshold
of structure skeletalizing S for gi; and h;;.
(1) P initial guesses(P sets of a;, 3i gi; and hy;) are
randomly created. Each matrix element of an individ-
ual (Figure 1) has a real number and is randomly set
within a given searching region.
(2) Evaluate each individual. Solve a simultaneous
differential equation (Equation 1) for each individual,
and calculate total error f using Equation 2. The fit-
ness of each individual is calculated as the reciprocal
of total error f. Within the group of P-individuals
in every generation, select the individual having the
largest fitness(elite individual) and check whether the
total error f of this individual is less than a given
threshold value of convergence. If the largest fitness
converges or the number of generations is beyond the
specified count Gnq., or if the fitness of elite individ-
ual does not change during G, (< Gmaz) generations,
exit the loop and terminate. The elite individual is
reported as the best matched model.
(3) Otherwise continue searching by introducing ge-
netic operations (crossover and mutation). Elite strat-
egy is introduced over the generations.
(4) With the exception of the elite individual, the
design code of each child is created based on the de-
sign codes of two parents. Two parents are selected
by the roulette-wheel selection with ranking strategy.
For each individual, the probability to be selected(p;)
is calculated by the following equation:

(1<i<N)

pi= % (n* - (n* - n')%) A

where N is the number of individuals, n* and #~ are
the maximum and minimum probability of selection.
We set the n* and n~ to 1.1 and 0.9, respectively.
(5) From the two selected parents, each matrix el-
ement of the child is alternatively chosen from the
corresponding elements of either parent at the same
probability. Since the number of matrix elements is
2n(n + 1), where n is the number of state variables,
this operation corresponds to the 2n(n + 1) — 1 point
crossover. The value of each matrix element is not
changed by crossover.

(6) Furthermore, miss-writing (mutation) is supposed
to occurr at mutation rate m when the matrix ele-
ments of the parents are copied to a child. We intro-
duced Gaussian mutation in which average and dis-
tribution are defined by the original value and d, re-
spectively. Set d to do at the initial generation, and
change the value according to the following conditions:
(i))When the fitness of the elite individual does not
change during G, generations, change to d(< do).
(ii)After the change, if the fitness of the elite indi-
vidual does not increase during next G, generations,
change to qdo(g > 1). (iii)If the fitness is not improved
during next G, generations, the value of distribution
d is returned to do. (iv)When the fitness of the elite
individual increase due to the (i)-(iii) strategies, the
distribution d is reset to dg. The mutation rate m is
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changed to k-times(k > 1) when the fitness of the elite
individual does not go up during G, generations.
(7) By repeating the procedures(4)-(6), (P— 1) chil-
dren are created for next generation. One child is the
elite individual whose design code is not submitted to
the genetic operations.

(8) Structure skeletalizing; i) The term g;; (hij), ab-
solute value of which is less than a given threshold
value (skeletalizing value) is reset to zero. 1i)This
procedure is performed at every specified generation
and at the termination of optimization.

(9) Return to step (2).

3 APPLICATIONS
3.1 OSCILLATORY SYSTEM

Figure 2(A) shows the calculated time-courses of X,
and X, of the S-system(N = 2 in Equation 1), pa-
rameter values of which are shown in Table 1. Given
these time-courses of X, and X, (Figure 2(A) is pre-
sented as experimental data((X; ezp.t), N =2, T =50
in Equation 2)), we examined whether our proposed
optimization procedures could explore and exploit a
set of parameter values which can provide the best
fitted time-course shown in Figure 2(A). The major
optimizing conditions are as follows: searching ranges
are [0.0, 5.0] for o; and B, [-3.0, 3.0] for gi; and hyj,
T = 50, P = 10000, Graz = 1000, Gn = Gmaz/2,
mo = 0.05, G = 20, do = 4.0(for ¢; and 3:), 1.6(for
Gij and hij)v d1 = 05(f0r (o7} and ,81‘), 02(f0[‘ gij and
hij), Ga = 10, ¢ = 5, k = 1.01, and the structure
skeletalizing are performed at every gemeration and
the threshold value of which is 0.5.

Figure 2(B) shows the obtained time-courses under
the above optimization condition. The obtained pa-
rameter values are listed in Table 2. Compared the
time-courses in Figure 2(B) with those in Figure 2(A),
the overshoot peak values of X, and X, in 2(B) is
less than those in 2(A), and the time-courses after
t = 1.0 (arbitrary unit) of X; and X; in 2(B) are
more monotonous than those in 2(A). The total dy-
namic patterns in 2(B) are, however, very similar to
those in 2(A); the average relative error between cal-
culated (2(B)) and given time-courses (2(A)) per sam-
pling point is 3.65% (see the column of algorithm A
in Table 3). Since this result shows that the opti-
mization method might be stranded in local minima,
we have improved our algorithm in order to explore
and exploit the better parameter space. In the above
case, since the number of individuals in one genera-
tion is very large (P = 10000), most of the individuals
the fitness value of which is small might be disap-
peared by ranking strategy, which leads to the sur-
vival of the large numbers of individuals which have
very similar S-system parameters. In order to avoid
this situation, we divided the individuals into many
small groups. We made 9 small groups which con-
sists of 100 inidividuals. The alternative algorithm
is as follows: First, each small group independently

performs optimization according to the proposed al-
gorithm except for P = 100, Gmer = 10000. After
the independent searching, 9 best individuals are ob-
tained from each small group. Prepared 91 individ-
uals except for 9 best individuals, we make the final
group (the number of individuals (P)=91+9 = 100)
which is allowed to the optimization according to
the proposed algorithm (P = 100, Gmaz = 10000).
The total numbers of created individuals is, there-
fore, 9 x 100 x 10000 + 1 x 100 x 10000 = 107,
which is the same as in the case of one large group;
P x Gmaz = 10000 x 1000 = 107.
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Figure 2: Given time-courses and obtained time-courses
of X1 and X2. (A), Given time-courses(parameter value
are listed in Table 1); (B). obtained time-courses (a set
of parameters is listed in Table 2.) (C), obtained time-
courses (a set of paraméters is listed in Table 4.) Initial
values of X1 and X2 is 1.0 and 1.5 respectively. In (A),
the number of sampling points of experimental data is 50
(T = 50 in Equation (2).)

The obtained parameter set by the revised algorithm
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is listed in Table 4, and the calculated time-courses are
shown in Figure 2(C). The oscillatory profile in Fig-
ure 2(C) is quite similar to that in 2(A); the average
of relative error between calculated (2(C)) and given
time-courses (2(A)) per sampling point is 1.39% (see
the column of algorithm B). Compared the obtained
S-system parameters (Table 4) with those in Table 1,
the structure (sign and magnitude of parameter) is
very similar. Table 5 shows the obtained results for
optimization with the original algorithm(algorithm A)
and with the revised algorithm(algorithm B). The
values in the table show the average value of 30
trials with the corresponding algorithm. The val-
ues in the parentheses represent standard deviations.
These results show the superiority of the revised algo-
rithm(algorithm B) to the original one(algorithm A).

Table 1: Given S-system parameters which provide the
dynamics shown in Figure 2(A).

i oo ga G2 B ha ho
1 30 00 -25 30 -10 0.0
2 30 25 00 30 00 20

Table 2: Obtained S-system parameters which provide
the dynamics shown in Figure 2(B).

oo gi gi2 Bi ha hi
1 3.17 -0.51 -2.46 3.10 158 0.00
2 381 217 0.83 3.60 0.00 288

Table 3: Obtained results of optimization. A: One large
group, B: Nine small groups. Time-course data which are
calculated from the obtained models are shown in Figure
2. Time for optimization represents a cpu-time until the
optimization was performed, which was measured on Tem-
pest 2 (Concurrent Systems Inc., Japan (processor:Alpha
21164A, 600MHz, SPECfp95: 21.3, SPECint95: 18.6))

Algorithm A B
Average relative error(%) 3.65 1.39
Maximun fitness value 7.50 51.6
Total explored generations 1000 55186
Total created individuals 107 5.5x 10°
Time for optimization(sec) 58803 31677

Table 4: Obtained S-system parameters which provide
the dynamics shown in Figure 2(C).

T gi Giz Bi hiv  hia
1 371 000 -1.91 374 -0.77 0.00
2 293 238 000 300 000 188
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Table 5: Obtained results of optimization. A: One
large group, B: Nine small groups Shown values are the
average of 30 trial runs and numeral with parentheses
represents standard deviations. Time for optimization
shows a cpu-time(second) until the optimization was per-
formed, which was measured on Tempest2{Concurrent
Systems Inc., Japan(processor: Alpha 21164A, 600MHz,
SPECp93: 21.3, SPECint95: 18.6))

Algorithm A B
Fitness value 2.86(1.24) 17.55(12.5)
Time for optimization 58392(1061) 36459(4303)

3.2 GENE NETWORK

Next, the proposed method was applied to determine
a set of parameters of the S-system which represents
a typical model of a gene network.

As a case study, we created several sets of time series
data, shown in Figure 3, which were numerically cal-
culated using the scheme shown in Figure 4(Savageau,
1998). The S-system parameters in Figure 4 are
shown in Table 6. The time series data in Figure 3(A)
were calculated with the condition that a; = 15.0,
a4 = 8.0 in Table 6, which corresponds to the situa-
tion in which both gene 1 producing X;(mRNA) and
gene 4 producing X4(mRNA) are active (wild-type).

In contrast, the time series data in Figures 3(B) and
3(C) were obtained under the condition that oy = 0,
a4 = 8.0 and that a; = 15.0, a4 = 0, respectively;
Figure 3(B) shows the case of the disruption of gene
1(corresponds to a; = 0), and 3(C) is the case of the
disruption of gene 4(corresponds to aq = 0). The op-
timization task is as follows: Can the proposed algo-
rithm explore and exploit the best S-system param-
eters matching the observed time courses shown in
Figure 3(A)-(C)?

We attemped to estimate part of the system param-
eters in Table 6. The targets of optimization are
twelve parameters; ai, gi1,---,915, 4, G41,---g45-
These represent the interaction coefficients that give
increasing effects of X, and X4(expression and regu-
lation of mRNA), respectively. The major optimizing
conditions are as follows: searching ranges are (0.0,
20.0] for a; and 3;, [-3.0, 3.0] for g;; and hi;, T = 50,
P = 5000, Gmaz = 400, G = Gmaz/2, mo = 0.004,
G = 10, dg = 4.0{for &; and B:), 1.2(for g;; and hy;),
d1 = 0.5(f0r [o 1} and ,5,'), 0.15(for Gij and hij), Gd = 10,
g = 5, k = 1.01, and the structure skeletalizing were
performed at every generation and threshold value of
which is 0.05.

At the 266th generation(CPU-time is about 11 hours},
we found the parameter set (a1, gi1, 912, 913, 914, 915,
Qa, Ga1, a2, ga3, Jas, Gas) to be completely identical
to that shown in Table 6. In an early step of total
optimization(at the 78th generation), a model which
reflects the same structure as the given model was
obtained, as shown in Table 8. The differences in pa-



rameter values between Table 6 and Table 8 are not
remarkable, indicating that the structure of the sys-
tem was obtained by global searching in early stages
of the optimization, and local searching (fine tuning of
parameters) was performed after the 78th generation.

(A)

value of X

value of X,

value of X,

time

Figure 3: Time series data calculated from the S-system
shown in Table 6; (A), wild type(a: = 15.0, ay = 8.0);
(B)disruption of gene 1(ay = 0.0, ay = 8.0); (C)disruption
of gene 4(a1 = 15.0, a4 = 0.0); There are 51(sampling
points) times 5(components) points in these time-courses
data.

4 DISCUSSION

In the application to the gene network, the final op-
timized structure was found at the 266th generation
and its essential structure was found at the 78th gen-
eration. The fitness value of the best model (obtained
at the 266th generation) is 133.6. The relative error of

Table 7: Obtained results of optimization in gene net-
work. The time for optimization was measured on Tem-
pest 2 (Concurrent Systems Inc.. Japan (processor:Alpha
21164A, 533MHz, SPECfp93: 20.1, SPECint95: 16.6))

Average relative error(%) 1.0 x 107°
Total explored generations 266
Time for optimization 39368sec

calculated time series data to the given data (Figure
3(A)-(C)) per sampling point is about 1.0 x 1073(%).
The fitness value and relative error at the 78th gen-
eration is 3.86 and 3.45 x 10~%(%), respectively. The
fitness was remarkably improved during the 78th and
the 266th generations, however, the relative error per
sampling point decreased slightly (from 1.0 x 1073(%)
to 3.45 x 107%(%)). Estimation of parameters in the
S-system using experimentally observed time-courses
is generally referred to as inverse problem and these
time-courses correspond to the restricted conditions
for an inverse problem. Since the proposed algorithm
proposes candidates (parameter sets) matching the re-
stricted conditions, the best candidate can most likely
be found by preparing more time-course data under
the disruption and overexpressions in the gene net-
work.
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