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1 Introduction

The ultimate goal of biology is to explain every detail and principle of biological
systems. Biological systems refer to various forms of natural life, such as bacte-
ria. cells, individual creatures. Since the discovery of the structure of DNA in
1953 [Watson and Click, 53], the fleld of molecular biology has emerged and has
made enormous progress. Molecular biology enables us to understand biological
systems grounded on physical systems; that is, on molecular machines composed
of proteins. Many biological processes — such as those of heredity, development,
disease — can now discussed on a molecular basis, and the basic mechanisms
of the such processes can be made clear. Such mechanisms include replication,
transcription, translation, etc. Genes and the functions of their transcription
products have been identified. The symbolic accomplishment along this line of
research is the complete sequencing of DNA. DNA sequences were completely
decoded for a numbers of organisms — such as mycoplasma, E. coli, C. ele-
gans, Drosophila, and the sequencing of human DNA is expected to complete
within a couple of years. The identification of genes from these sequences has
also underway with astonishing speed, and studies deepening our understanding
of protein and their interactions are also in progress. Parallel to such efforts,
numbers of methods for disturbing biological systems selectively, such as loss-
of-function knock-out of specific genes, have been and are being invented. For
a particular specics, C. elegans, an easy and efficient disruption method called
RNA interference (RNAi) was invented, and a project to systematically and
exhaustively knock-out various genes is underway.
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There is no doubt that our understanding of the molecular-level mechanisms
of biological systems will progress at an even faster pace, but this will not
provide us with an understanding of biological systems as systems. Genes and
proteins are components of the systems. While understanding what constitutes
the system is necessary for understanding the system, it is not sufficient. A
series of methods and technique has to be developed that are specifically geared
to provide system-level understanding.

Systems biology is a new field of biology that aims at a system-level under-
standing of biological systems. If we are to understand biological systems as
systems, we must understand (1) the structures of the systems (both compo-
nents and their structural relationships), (2) behaviors and their characteristics
at different points in the parameter space, (3) methods controlling the states
and behaviors of the system, and (4) methods by which systems with desired
functions are designed and built.

The scope of systems biology is potentially very broad and different sets of
techniques may be deployed for different research targets. Nevertheless, two of
the main targets will be genetic and metabolic network systems, because they
are the systems controlling the fundamental mechanisms that govern biological
systems. Gene regulatory networks and metabolic networks are highly com-
plex networks with extensive feedback loops. We must develop methods for
understanding and controlling such complex and large-scale networks.

Fortunately, extensive data is available for some of well studied model
animals, such as C. elegans. A complete cell lincage has already identified
[Sulston et al., 83, Sulston and Horvitz, 77}, the topology of the neural sys-
tem has been fully described (White et al., 86], and the DNA sequence has
been fully identified [C. elegans, 93]. A projoect using in situ hybridization
[Tabara et al., 96] to provide a full description of gene expression patterns dur-
ing development is underway. and the construction of a systematic and exhaus-
tive library of mutants has begun. In addition, a series of new projects for
measurement of neural activity in vivo have started as has a project for the
automatic construction of a cell lineage in real time by using advanced image
processing combined with special microscopy [Yasuda, et al., 99].

While the effort focused on C. elegans is a symbolic example of efforts di-
rected at a comprehensive and exhaustive understanding of biological systems,
similar efforts can be expected to be focused on a range of biological systems
in the near future. Although at this moment these studies are limited to the
understanding of components of the system and of their local relationships with
other components, the combination of such exhaustive experimental work and
computational and theoretical research would be a viable foundation for systems
biology.

The next stage of understanding need to be accomplished at the system-
level, where the focuse is on how the components work together and behave as
a system. There are numbers of specific issues that need to be addressed at each
of the following four levels:



System Structure Identification Identification of structure of the system
— such as regulatory relationship of genes and interaction of protein that forms
signal transduction and metabolism pathway — need to be accomplished. Both
the topological relation of the network of components and the parameters for
each relation need to be identified. The use of high-throughput expression
data, RT-PCR, and other methods monitoring biological processes are criti-
cal resources. Nevertheless, methods to identify the structure of the gene and
metabolism networks from these data are still to be established.

Identification of gene regulatory networks in multicellular organisms is even
more complex than for a single cell, because such a network involves extensive
cell-cell communication and physical configuration in three dimensional space.
Structure identification for multicellular organisms inevitably involves not only
the structure of gene regulatory networks and metabolism networks, but also
requires that the physical structures of the whole animals be known with the
same precision that their cellular structures are known. Obviously, new instru-
mentation systems to collect the necessary data need to be developed.

System Behavior Analysis Once a system structure is identified to a certain
degree, the system’s behavior needs to be understood. Various analysis methods
can be used to serve various purposes. For example, one may wish to know
the sensitivity of certain behaviors to external perturbation and to know how
quickly the state of the system returns to the normal state after it is perturbed.
The analysis required for answering these questions not only reveals system-
level characteristics, but also provides important insights for medical treatments
because it reveals how cells responds to a range of concentrations of chemicals.
Therapeutic effects can thus be maximized with minimizing side effects.

System Control If we are to apply the insight obtained from an understand-
ing system structure and behavior, we must establish method for controlling the
state of biological systems. How can we transform cells that are malfunctioning
into healthy cells? How can we control cancer cells to turn them into normal
cells or cause apoptosis? Can we control the differentiation status of a specific
cell such that it transforms into a stem cell and then control it to differenti-
ate into a desired cell type? Technologies providing such control would benefit
human health enormously.

System Design Ultimately, we would like to establish technologies that allow
us to design biological systems curing diseases. One futuristic example would be
to design and grow organ from the tissue of the patient. Such an approach, which
may be called " partial organ cloning,” would be enormously useful for treating
diseases that require the transplantation of organs. There may also be some
engineering applications using biological materials for robotics or computation.



By using materials that are able to maintain and repair themselves, industrial
systems will undergo a revolutionary transition.

2 Characteristics of Biological Systems

Before specific approaches to understanding biological systems can be discussed,
there must be some discussions of how the characteristics of biological systems
compare with those of other complex systems. In research on most complex
systems, it is assumed that large number of simple components emerge to exhibit
complex behaviors. Such a phenomenon is termed emergence. In many case, the
components of the system are assumed to be homogeneous. Biological systems
are indeed composed of very large numbers of cells, proteins, and genes, but
these components are not at all homogeneous or simple. Biological systems are
best characterized by the following three structural characteristics:

Heterogeneity of components: The components of a biological system are
heterogeneous. At the genetic level, it consists of thousands of genes, each
of which has different regulatory relation and each product of which has a
different function. The system cannot be simply considered a large number
of homogeneous components, nor can its behavior be approximated using
average behavior.

Complexity of components: Each component is itself complex. Each gene
has a complex regulatory structure and its product has its own complex
structure and dynamics. Each protein has a different structure and a
different function. And protein do not exist in isolation. They form com-
plex and even larger structures such as microtubles, cell membrane, and
other substructures of cells. Diverse functions of proteins are essential for
biological systems.

Selectivity of interactions: Interaction among components are highly selec-
tive. Which gene regulates which other genes is highly specific, and the
interactions of proteins are also highly specific. This specificity ensures
that complex and diverse components can be created, and it ensures that
various substructures of cells can be maintained.

These structural characteristics are essential features of biological systems.
Although one might wish to model the system as networks of simple and homo-
geneous elements, such an abstraction fails to capture the essence of the system’s
properties. While the conventional approaches analyzing the average behaviors
of the system may provide some insights, we need to establish methodologies
that can cope with large-scale networks of complex and heterogeneous elements.



3 Design Patterns and Control Principles

As it can be assumed from the fact that the structures of biological systems are
formed through evolution — that is, through the accumulation of the effects
of random events with selection pressure — there is no guarantee that existing
biological systems are optimally designed for the various functions they exhibit.
Thus, it is not possible to infer the structure of a system from the function of the
system. Instead of pursuing design principles that dictate how a system shall be
optimally designed for the desired function, we should try to identify patterns
of design so that we can create a library of design patterns that are used is
biological systems and develop methods that can quickly identify which of these
patterns is used for a specific biological system. Design patterns in living things
can be identified in various levels. The most important design pattern that we
focus are patterns of genetic and metabolism network because they are the basis
of various biological processes and responsible for fundamental characteristics
of the living creatures.

The generation of the design patterns underlying biological systems was. of
course, not completely random. Although evolution is a stochastic process, se-
lection pressure chose certain classes of circuits that are likely to be functional
in some aspects. Various forms of feedback loops, redundancy path, and mod-
ular design are incorporated in many of the circuits. While the structures of
the circuits and their components may vary, the number of underlying control
mechanisms can be reduced through evolution and these mechanisms can be
conserved. Although evolutionarily conserved genes are the focus of interest at
this moment, evolutionarily conserved control circuits will be the major interest
in systems biology research.

There are interesting analogies between biological systems and engineer-
ing systems. Both kinds of systems are designed incrementally through some
sort of evolutionary processes and are generally sub-optimal for the given task.
And both attain higher levels of robustness and stability as their complexity in-
creases. Mycoplasma, which has only about 400 genes is a minimal self-sustained
organism and can survive only in a consistent environment. E. coli has evolved
to have nearly 4,000 genes and can survive in a varying environment. Most the
additional genes contribute to robustness against internal and external purta-
bations. Similarly, the first airplane built by the Wright brothers had only a
handful of parts, but a modern jet like the Boeing 777 has millions of parts.
Such a great increase in the number of components is for the most part, a result
of efforts to ensure the stability and robustness of the airplane’s operation.

" In engineering systems, robustness and stability are achieved by the use of
feedback, redundancy, and modular design. Feedback is a sophisticated control
system that closes the loop of the signal circuits and attains the desired control of
the systems.A negative feedback system detects a difference between the desired
output and the actual output and compensates the difference by adjusting the
input. This is one of the most widely used methods to increase the stability



and robustness of the system. Redundancy is a method widely used to improve
a system's robustness against damages to its components by using multiple
pathways to accomplish the system’s function. Modular design prevents damage
from spreading without limit and also eases the evolutionary up-grading some
of the system components.

4 System Structure Identification

To understand a biological system, we must first identify its structure. To
identify a gene regulation network, for example, one must identify all the com-
ponents of the network, the function of each component, the interactions of all
components, and all associated parameters. All the experimental data available
should be used becausethis task is clearly not a trivial one. The difficulty is that
the structure of such a network cannot necessarily be inferred from experimen-
tal data based on some principles or universal rules because biological systems
evolved through a stochastic process. In most cases, there are multiple solutions
to the problems posed by a given set of data, and one must find computational
and experimental methods to identify which of these solution is the one applying
to the specific biological system under consideration.

4.1 A Choice From Multiple Solutions

The trap of multiple solutions can be illustrated in a simple example of stripe-
pattern formation. Various forms of stripe patterns are formed in the pro-
cess of development, and how such strips are formed is an interesting re-
search topic. For example, Kondo and Asai demonstrated that stripe pat-
terns in a marine angelfish Pomacanthus are generated by the turing wave
[Kondo and Asai 95]. A stripe pattern is also formed in the early embryogencsis
of Drosophila melanogaster. Seven vertical stripes are formed by transcription
products of even-skipped (eve) gene. Staut Kaufmann once claimed that this
is also formed by the turing wave, but it later became clear that each of the
seven stripe is controlled independently by a set of regulator genes. Even if
two phenotypically similar patterns are formed, there is no guarantee that they
are formed by the same mechanisms. We should consider that biological sys-
tems exploit all possible mechanisms that can support desired functions. This
means that there may be several different mechanisms that can create similar
phenotypes.

Figure 1(A) shows an expression level of gene A along the anteior-posterior
axis. Three evenly spaced stripes can be formed by a Turing wave (Fig. 1(B)),
or by independently controlled gene regulation, similar to eve in Drosophila (Fig.
1(C)). While which one of two possible gene regulatory networks is actually used
cannot be determined by looking only at wild-type, it can be distinguished by
creating loss-of-function knockout of gene B. A Turing wave pattern will disap-
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pear if gene B is knocked out, whereas the stripe patterns will be unaffected (or
only one or two of them will be affecred) if the stripes are controlled indepen-
dently. Gene knockout thus provides data for identification of gene regulation
networks. Situation is rather complicated, however, if the network is structured
as indicated by the expression-level plot in Fig. 1(D). In this network, gene A
is activated by gene B. Thus, if we knock out gene B, stripe pattern will dis-
appear just as a Tunring wave pattern disappears when gene B is knocked out.
Nevertheless, if we can knock out genes that control gene B independently, only
one or two stripe will be eliminated so the pattern can be distinguished from a
Turing wave pattern.

4.2 Appraoches for Structure Identification

Several attempts has already been made to identify gene regulatory network
from experimental data. These attempts have taken the following approaches:

Bottom-Up Approach: The bottom-up approach tries to construct a
gene regulatory network from independent experimental data. mostly ob-
tained through a lirerature search and the rest obtained from experi-
ments designed to provide information about specific aspects of the net-
work of the inferest.  Some early examples of this approach were model-
ing of a lambda phage decision circuit {McAdams and Shapiro, 95]. the carly
embryogenesis of Drosophila [Reinitz. et al.. 93] {Hamahashi and Kirano. 93]
[Kitano ct al., 97], leg formation {Kyoda and Kitano 99a], wing formation
{Kyoda and Kitano 99b}, eye formation on ommatidia clusters formation and
R-cell differentiation {Morohashi and Kitano, 98], and a model of cye formation
based on reaction-diffusion model [Ueda and Kirano, 98]. This approach is suit-
able when most of genes and their regulatory relationships are relatively well
understood. In some cases, biochemical constants can be measured so that very
precise simulations can be performed. When most parameters are available, the
main purpose of the research is to build a precise simulation model so that dy-
namical propertics of the system can be analyzed by changing parameters rhat
cannot be changed in the actual system, and so that available knowledge can be
tested to see if it leads to simulation results consistent with experimental data.

Top-Down Approach: The top-down approach tries to make use of data
sathered using a high-throughput DNA micro-array and other new measure-
ment technologies. There have already been attempts to infer genetic net-
work structurcs from DNA micro-array data gathered using a clustering tech-
nique to explore the yeast cell cycle {Brown and Botstein, 99, DeRisi, et al., 97.
Speliman, et al., 98] and the development of the mouse central neural system
[D’haeseleer, et al., 99]. Clustering methods are suitable for handling large-scale
profile data but do not directly provide nctwork structures. It only provides



clusters of genes that are co-expressed with similar temporal patterns. Some
heuristics must be imposed if we are to infer network structures from data
gathered in experiments using such methods. Alternative methods to directly
infer network structures directly from expression profiles are now being devel-
oped [Morohashi and Kitano, 99, Liang, et al., 99] and from an extensive gene
disruption data{Akutsu et al., 99]. Easy-to-understand visualization is often re-
quired [Michaels, et al., 98], and this poses serious computational challenges.
Methods that enable the structure of genetic networks to be inferred from the
smallest possible amount of expression profile data need to be developed.

Hybrid Approach: A hybrid of the bottom-up and top-down approachs is
a promising and practical method. Tt is unlikely that no knowledge should be
assumed in the process of gene network inference from the experimental data. In
practical cases, it can be assumed that genes and their interactions are already
understood rather well, and all that needs to be identifed is the rest of the
network. The use of trustworth knowledge can significantly reduces the kinds
of network structures feasible.

4.3 Computational Challenges

There are many challenges common to these approaches. One of the computa-
tional challenges can be defined as follows:

Given a set of expression profile data and a gene network, find a set
of simulation parameters that generates the expression profile.

This situation, however, is too much simplified and the challanege can serve
only for proof-of-concept level studies. The actual situation is much more com-
plex, and the truc computational challenge can be defined as follows:

Given a set of noisy expression profiles, experimental data, and par-
tially correct networks, find a set of plausible gene regulatory net-
work topologies and their associated parameters.

Not only finding the structure of the network, but also finding a set of
parameter is important because all computational results have to be tested
against actual experimental results. In many cases, parameter set has to
be estimated from experimental data. Various parameter optimization meth-
ods, such as genetic algorithms and simulated annealing, are used to find a
sct of paramecters that can gencrate simulation results consistent with exper-
imental data [Hamahashi and Kitano, 99]. It must be noted that there may
be multiple parameter sets that generate simulation results equally well fitted
to experimental data. An important feature of parameter optimization algo-
rithms to be used in this approach is that they find as many local minima
(including a global minimum) as possible, rather than finding single global



minimum. Combined with the parameter search, there must be a mecha-
nism to generate hypotheses about genetic and metabolic interactions. Even
in the most well-investigated biological systems, not all the network structure
is identified. One of the most important roles of the bottom-up approach is
to predict unknown genetic interactions consistent with available knowledge
and data. There have already been preliminary attempts to predict unknown
genes and their interactions {Morohashi and Kitano, 98, Kyoda and Kitano 99a,
Kyoda and Kitano 99b]. These attempts have involved manual searches for pos-
sible unknown interactions from which simulation results consistent with exper-
imental data can be obtained. An exhaustive search of all possible space of
network structures have not been performed. Research on an automatic hy-
potheses generator is now underway [Akutsu et al., 99].

4.4 Measurement Issues

Computational efforts alone will never identify the structure of gene and
metabolic networks. There are numbers of aspects of the measurement tech-
nique that need to be improved.

First, the accuracy of the DNA micro-array technique and other measure-
ment techniques needs to be improved drastically. While RT-PCR provides a
more accurate measurement when it is calibrated properly, it cannot measure
as efficiently as a DNA micro-array can. Second, measurements are performed
for cultures of cells. While such measurements are suitable for studying homo-
geneous cell cultures, single-cell measurement techniques are necessary for most
research in developmental biology and in the investigation of homogeneous cell
cultures. Third, not only mRNA levels, but also protein concentrations need to
be measured, preferably simultaneously. In addition, intracellular localization
patterns should be measured.

5 System Behavior Analysis

Once we understand the structure of a system, research will focus on the dy-
namic behaviors of the system. How does it adapt to the changes in the en-
vironment, such as change in the levels and kinds of nutrients available? How
does it maintain its integrity when subjected to damages such as DNA damage
and mutations. If we want a system-level understanding, we need to understand
the robustness and stability of the system.

This is a very interesting issue from both biological and engincering
viewopints. There is relationship between the robustness of a system and com-
plexity of that system. Consider again the example of an airplane. If atmo-
spheric air flow is stable and the airplane does not need to change its courses,
altitude, or weight balance, and does not need to take off or land, it can be build
using only a handful of components. Modern jet airliners, however, have millions
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of components, mainly to improve their stability and robustness. One of the
major reason for increasing the complexity of engineering systems is to increase
their stability and robustness. Is this also the case for biological systems?

Mycoplasma is one of the smallest self-sustaining organisms and has only
about 400 genes. It can live only under narrowly specific conditions, and thus
very vulnerable to environmental fluctuations. E. coli, on the other hand, has
over 4,000 genes and can live in varying environments. E. coli has evolved
genetic and biochemical circuits for various stress responses and basic behavioral
strategies, such as chemotaxis [Alon, et al., 99, Barkai and Leibler, 97]. These
response circuits forms a class of negative feedback loop. Similar mechanisms
also exists in cukaryotic cells.

The major methods used to improved the robustness and stability of engi-
neering system are feedback control, redundancy, and modular design. Is this
also the case for biological systems? and if so how do these metods work in
biological systems?

5.1 Feedback

One of the simplest examples of how a biological system exploits feedbacks can
be scen in the lambda phage fate decision circuit{McAdams and Shapiro, 95].
Lambda phage exploits a feedback mechanism to stabilize the committed state
and to enable the switching of its pathways. When lambda phage infects E. coli,
it chooses one of two pathways: lysogeny or lysogen. While a stochastic process
is involved in the early stage of commitment, two positive and negative feedback
loops involving CI and Cro plays critical roles in the stable maintenance of the
committed decision (Fig. 2 and Fig. 3). Whether to maintain feedback or
not is determined by amount of activator bound to the Og region, and the
activator itself cuts off feedback signal if this amount exceeds a certain level.
This is an interesting molecular switch that is not found elsewhere. Overall, the
concentration of Cro is maintained at a certain level by using positive feedback
and negative feedback (Fig. 4). It is important that we can identify such
mechanisms and create a library of them if we are to understand patterns of
genetic circuit designs.

Another example demonstrating a critical role of the feedback system is seen
in control of the growth of human cells. Growth control is one of the most critical
cellular functions and the feedback circuit involved in p53 presents a clear exam-
ple how feedback is used (Fig. 5). When DNA is damaged, a DNA-dependent
kinase (DNA-PK) is activated and promotes phosphorylation of a specific locus
of the p53 protein. When this locus is phosphorylated, p33 no longer forms a
complex with MDM2 and it from being dissolved The phosphorylation locus
depends on what kind of stress is imposed on the DNA. In one case, phospho-
rylated p53 promotes transcription of p2l, and causes G1 arrest. In another
case, it promotes pig-3 activation and results in apoptosis. For those cells that
entered G1 arrest, DNA-PK activity is lost as soon as DNA is repaired. The
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Figure 2: Lambda Decision Circuit
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Figure 5: p53 related feedback loop

loss of DNA-PK activity decreases phosphorylation of p53, so that p53 will bind
with MDM2 and dissolve.

Without phosphorylation, p53 protein promotes mdm-2 transcription. It is
interesting that mdm-2 protein forms a complex to deactivate p53 protein. This
is another negative feedback loop embedded in this system.

5.2 Redundancy

Redundancy also plays important role in assuring robustness of a system. It
is critical for coping with accidental damage to components of the system. If
there are four independent signal transmission sub-systems, the system functions
normally if one or two of them are damaged. In fact, there are four independent
hydraulic control systems in the Boeing 777, so it is highly robust. The MAP
kinase cascade involves extensive crosstalk among collateral pathways. Even if
one of these pathways is disabled as a result of mutation or some other cause,
the function of the MAP kinase pathway as a whole can be maintained because
the other pathways still carry signals (Fig. 6).

Once we understand stability and robustness of the system, we should be able
to understand how to control and transform cells. We should be able to address
such questions as how can we transform cells malfunctioning into normal cells?
and how can we predict the risk of diseases and treat those diseases preemptively.
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6 Software Platform

A set of software systems to assist systems biology research need to be devel-
oped and integrated. Such systems will include software for data collection, for
simulators, for parameter optimization, for data visualization system, and for
various analytical tools. While there are many independent efforts to develop
some of this software, there has been no effort to create a common platform that
integrates these software modules. Recently, a group of researchers initiated an
effort to define software platform for systems biology. Although there are a
number of issues relevant to a software platform for systems biology that need
to be addressed, the rest of the section describes only some illustrative issues.
Simulation of the behavior of gene and metabolism networks plays an im-
portant role in systems biology research, and there are several devoted to simu-
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lator development {Mendes and Kell, 98, Tomita et al., 96, Kyoda, et al., 2000,
Nagasaki, et al., 99]. Because of the complexity of the network behavior and
the large number of components involved, it is almost impossible to under-
stand behaviors of such networks intuitively. In addition, accurate simulation
models are essential for analyzing system dynamics by changing the parameters
and structure of the gene and metabolism networks. Although such analysis is
necessary for understanding dynamics, the parameters and structures of actual
biological systems cannoted freely changed. Simulation is a essential tool not
only for understanding the behavior of the existing systems but also for design-
ing new ones. Various forms of simulation are used when complex engineering
systems are designed, and it is unthinkable today that any significantly complex
engineering systems can be designed and built without simulation. VLSI design
undergoes serious design simulation that creates one of the major market for
supercomputers. Commercial aviation provides another example. The Boeing
777 design was fully based on simulation and digital pre-fabrication. Once we
entered that stage of designing and actively controlling the biological systems,
simulation would be the central method of design process.

If simulation is to be a viable methodology for studying biological systems,
we need to develop highly functional, accurate, and user-friendly simulator sys-
tems. Simulators and associated software systems often require so much com-
puting power that they need to be run on highly parallel cluster machines,
such as Beowulf-cluster [Okuno et al., 99]. Although there are some simula-
tors, no system meets the needs of a broad range of biology research, where
simulators must be able to simulate gene expression, metabolism, and signal
transduction for single cells and for multiple cells. The kind of simulator we
need must be able to simulate both high concentrations of proteins that can
be described by differential equations, and low concentrations of proteins that
need to be handled stochastically. Some efforts on simulating a stochastic pro-
cess {McAdams and Arkin, 98] and integrating it with high-concentration level
simulation are underway. In addition, no existing simulator incorporates local-
ization within a cell.

In some cases, it is necessary to model not only gene regulatory networks and
metabolic networks, but also the high-level structure of chromosome, such as
heterochromatin structures. In the study of aging, there have been attempts to
model heterochromatin dynamics [Kitano and Imai, 98, Imai and Kitano, 98].
Nevertheless, how to model such dynamics and how to estimate the structure
from sparse data and our current level of understanding are major challenges.

The simulator need to be coupled with parameter optimization tools, a hy-
pothesis generator, and a group of analysis tools. And the algorithms underlying
these software systems need to be designed for biological research. One exam-
ple, mentioned earlier here, is that the parameter optimizer needs to find as
many local minima (including a global minimum) as possible because multiple
solutions are possible and only one of them is actually used. The assumption
that the most optimal solution is the one used in the actual system does not
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hold for biological systems. Most parameter optimization methods are designed
to find the global optima for engineering design and for problem solving. While
existing algorithms can be starting points, they must be modified for biological
research. Similar arguments also holds for other software tools.

Ultimately, the software tools used for modeling diseases and for simulating
organ growth and control needto provide a comprehensive and highly integrated
simulation and analysis environment.

7 Conclusion

Systems Biology is an emerging field in biology. It aims at system-level un-
derstanding of biological systems. System-level understanding requires a range
of new analysis techniques, measurement technologies, experimental methods,
software tools, and concepts for looking at biological systems. The field is a new
one and has a long ways to go before it will provide a deep understanding of the
biological systems. Nevertheless, the author believes that systems biology will
be the dominant paradigm in biology and that it can be expected to provide a
number of medical applications as well as scientific discoveries.
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