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In a typical functional magnetic resonance imaging (fMRI) experiment,
blocks of baseline and activation images are scaned periodically while the subject
is at rest (or some other "baseline" condition), and while the subject is performing
a specified motor or cognitive task or is receiving a given sensory stimulus. The
image series must then be analysed in order to detect those picture elements
(pixels) that show significant responses to the activation-baseline pattern. This
paper presents two statistical tests that can be used to perform this task.

The first test is called the t test. This is the optimal solution to the
problem of detecting a known activation signal in a time series when it is
embedded in white Gaussian noise. The results of this test are known to be
equivalent to the cross-correlation method that is widely used for activation
detection in fMRI [1].



The second test is the optimal solution when the measured data is
modeled as an unknown activation signal that lies in a known subspace of the
measurement space and has additive white Gaussian noise. This is called the F
test. Also, a model for the signal subspace based on a truncated Fourier series is
proposed for periodic activation-baseline paradigms. The advantage of this second
method is that it does not assume any information about the shape or delay of the
activation signal except that it is periodic and has the same period as the
activation-baseline pattern. This makes it easier to apply this test in comparison
to the t test or cross-correlation methods.

These tests are not new and have been applied to areas as diverse as sonar
and radar signal detection. This paper serves as a compact review of the methods
in the context of fMRI brain mapping and should serve as a useful reference for
researchers in this area. Both problems are special cases of the general linear
model that has recently been applied to funtional brain mapping [2], [3].

gooobobd

In order to test the algorithms presented in the paper, the two models
were applied to sets of fMRI motor activation data. The data was collected with a
1.5T whole body system (Siremens Magnetom Vision, Erlangen, Germany) with a
standard head coil. All studies were approved by the institutional review board at
the Research Institute for Brain and Blood Vessels, and proper informed consent
was obtained from all subjects.

The activation task consisted of flexing and stretching digits 2-5 on a flat
plastic surface within a fixed 2.5cm distance without moving the wrist. Subjects
wore headphones so that the frequency of finger movement could be paced by the
metronomic sounds created by software on a Macintosh computer. Functional
imaging consisted of a single-shot, blipped, and echo-planar pulse sequence. The
acquisition time for a 128 x 128 slice was 96ms. Each frame consisted of five axial
slices with a slice thickness of 3mm and a slice gap of 0.75mm. A scan consisted of
120 sequential frames (600 slices in total) centred 5cm above the axial plane
containing the anterior and posterior commissures line (AC-PC line). The echo
time (TE) was 67ms, and the interframe interval (TR) was 3sec, yielding a total
scan time of 6 minutes. Subjects were instructed to keep their eyes open
throughout the studies. They were provided with instructions and were allowed to
practice before the scanning session. After an initial 60sec rest period, the motor
task was performed for 15sec (5 activation frames) followed by a 15sec rest (5
baseline frames). Thus, a total of 10 frames were acquired during each 30sec



period (T=10). The 20 frames that were acquired during the initial 60sec rest
period were discarded in order to ensure that the level of net magnitisation had
reached a sufficiently steady state. This left N=100 frames that contained 10
activation-baseline cycles. The average intensity image of the remaining 100
frames was computed and subtracted from each individual frame. In addition, a
linear drift component was estimated using linear regression and subtracted from
the data at each pixel. No motion correction was applied to the data before
processing.

An activation map was computed for the t test by calculating the t statistic
for the time-series collected at each pixel of the functional image. In computing
the t values the known activation signal was taken to be a delayed version of the
square-wave stimulus paradigm. The test was repeated 5 times with delays of O, 1,
2, 3, and 4 frames. The activation map was thresholded at a significance level of
0.01 according to the Student t distribution. This final result is called a t map.
Similarly, an F map was obtained by calculating the F statistic for each
time-series in the image and then thresholding at the F value corresponding to
the 0.01 significance level of the F distribution.

goog

All subjects studied for this paper consistently showed activation in the

motor cortex region of the brain. However, as the emphasis of this paper is on
methodology, the physiological implications of the results are left as a subject for
future writing.
Figures la-e show the results of the t test applied to a single slice from one of the
subjects for each of the five different delays. The t map is clearly sensitive to the
delay that is unknown and may vary from region to region. Additionally, the
shape of the reference activation signal may not be the presumed square wave
and it may also vary from region to region. Moreover, both the shape and delay of
the activation signal may vary with the activation task. These shortcomings apply
equally well to both the t test and the cross-correlation methods.

Figure 1f shows the activated pixels obtained using the F test. There
seems to be little difference between this result and those obtained from the t test
with delays of 1 and 2, although the t map appears to have slightly more spurious
solitary activated pixels. These may be pixels where the test has incorrectly
declared the pixel to be activated. The clear advantage of the F test is that it does
not require the activation signal or delay to be explicitly specified.



Fig. 1: (a)-(e) t maps (significance level 0.01) for delays of 0, 3, 6, 9, and 12 secs, respectively.
() F maps (significance level 0.01) with a signal subspace dimension of 6.

In order to gain more insight into the F test, Figs. 2 a and b plot the
time-series from an active and inactive pixel, respectively. Also included in the
figures is the component of the time-series that is contained in the signal
subspace. It can be seen that for the activated pixel, much of the total energy of
the observed fMRI time-series is contained in the signal subspace. This is not the
case for the inactive pixel. In other words, the trigonometric Fourier series model
does a better job of explaining the variation in an active pixel than in an inactive
pixel. In both cases, however, the variance of the residual is about the same.
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Fig. 2: Observed fMRI time series and its computed signal subspace component for (a) an
activated pixel, and (b) an inactive pixel.
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Two statistical tests for detecting activated pixels in fMRI brain activation
studies were presented. The t test is equivalent to the cross-correlation method.
The disadvantage of the t test and cross-correlation methods is that the shape and
delay of the activation signal must be known a priori. On the other hand the F test
does not require explicit knowledge of the activation signal. It only needs a
subspace within which the signal is presumed to lie. In this paper such a subspace
was specified for experiments that have a periodic stimulus paradigm.

1200000

[1] PA Bandettini, A Jesmanowicz, EC Wong, JS Hyde, Magn Reson Med
30:161-173; 1993.

[2] KJ Friston, AP Holmes, KJ Worsley, J-P Poline, CD Frith, RSJ Frackowiak,
Human Brain Mapping 2;189-210; 1995.

[3] C Buchel, RJS Wise, CJ Mummery, J-P Poline, KJ Friston, Neuroimage
4:60-66;1996.

130004004

13- 10 000nbn



[1] Ardekani BA, Kanno I: Statistical methods for detecting activated regions in
functional MRI of the brain., Magn Reson Imaging 16, 1217-1225, 1998

13-20 0000000

13-300000oon
[1] BA Ardekani, J Kershaw, K Kashikura, I Kanno, Statistical Analysis of
functional MRI data, Proc 6th ISMRM: p. 247, 1998.

13400000000

[1] Ardekani BA, Kanno I, Kershaw J, Kashikura K[IJ A statistical method for
detecting activated pixels in fMRILO O 2500 0000000000 0O O 1997
090

140 Statistical Methods for Detecting Activated Regions in Functional MRI of the
Brain

150 Akita Research Institute of Brain and Blood Vessels

1600 Babak A. Ardekanil] Akita Research Institute of Brain and Blood Vessels[]

170 Iwao Kanno (Akita Research Institute of Brain and Blood Vessels)

1800 1996-1998

1900 Abstract

Two statistical tests for detecting activated pixels in functional MRI
(fMRI) data are presented. The first test (t test) is the optimal solution to the
problem of detecting a known activation signal in Gaussian white noise. The
results of this test are shown to be equivalent to the cross-correlation method
which is widely used for activation detection in fMRI. The second test (F test) is
the optimal solution when the measured data is modeled to consist of an unknown
activation signal which lies in a known lower dimensional subspace of the
measurement space with added Gaussian white noise. A model for the signal
subspace based on a truncated trigonometric Fourier series is proposed for
periodic activation-baseline imaging paradigms. The advantage of the second
method is that it does not assume any information about the shape or delay of the
activation signal, except that it is periodic with the same period as the
activation-baseline pattern. The two models are applied to experimental
echo-planar fMRI data sets and the results are compared.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) employs
fast MRI techniques such as echo-planar imagingl (EPI)
in order to detect changes in local cerebral blood flow
and oxygenation levels elicited by neuronal activity. The
technique hinges upon the sensitivity of the magnetiza-
tion decay rates to changes in physiological conditions.
For example, the decay rate T, has a blood oxygenation
level dependence (BOLD).? Apparently, the increase in
blood flow in activated areas of the brain exceeds the
corresponding increase in oxygen consumption. Thus,
venous blood has an elevated oxygen content resulting in
an increased T, and a corresponding increase in the
intensity of T,-weighted MRI. '

In a typical fMRI experiment, blocks of baseline and
activation images are scanned periodically while the
subject is at rest (or some other “baseline” condition) and
when the subject is performing a specified motor or
cognitive task or receiving a given sensory stimulus. The
image series must then be analyzed in order to detect the
picture elements (pixels) which show significant re-

sponses to the activation—baseline pattern. We present
two statistical analysis methods that can be used for this
purpose. Currently a widely used method for detecting
activated pixels in fMRI data is the cross-correlation
method.? In this method, one computes the cross-corre-
lation between the measured time-series and a reference
activation signal. Those pixels that show high correla-
tions are declared to be activated. The main drawback of
this method is that the cross-correlation coefficients de-
pend on the shape of the activation signal (the hemody-
namic response), which is unknown. One approach to
overcoming this problem is to model the activation sig-
nal to be the output of a linear time-invariant (LTI)
system whose input is the activation—baseline pattern.*~°
The problem of estimating the unknown activation signal
is therefore reduced to the problem of estimating the
unknown parameters of the impulse response function of
the LTI system. However, LTI systems may not be able
to adequately model the dynamics of the activation sig-
nal. The reason for this statement is that when the acti-
vation—baseline pattern is a square wave (i.e., the num-
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ber of activation images equals to the number of baseline
images during each activation—baseline cycle), its Fou-
rier series only contains odd harmonics. Therefore, when
this waveform is applied to the input of an LTI system,
the output should not contain even harmonics. Neverthe-
less, published results in the literature show that hemo-
dynamic responses to square wave activation—baseline
patterns clearly contain strong second harmonic compo-
nents.>>” These results appear to contradict the basic
property of LTI systems mentioned above.

In this paper, we present and apply two statistical
methods for detecting activated pixels in fMRI data. The
first method assumes that the measured time-series at
each pixel consists of a known activation signal in
Gaussian white noise. The optimal solution to this prob-
lem is shown to be a t-test, which is shown to be
equivalent to the cross-correlation method. In the second
approach, the activation signal component is assumed to
be unknown but to lie in a known signal subspace. The
optimal solution for this model is given in terms of an F
test. Another aim of this paper was to show that for
periodic activation—baseline patterns, this method does
not require explicit knowledge of the activation signal.
Hence, it is easier to apply as compared to the first
method or the cross-correlation method. These tests are
of course not new and have been applied to areas as
diverse as sonar and radar signal detection. This paper
serves as a compact review of the methods in the context
of fMRI brain mapping and should serve as a useful
reference for researchers in this area. Both problems are
special cases of the general linear model which has been
applied to functional brain mapping by Friston et al.®
They also derive an F-statistic but state that F-maps “are
seldom employed as direct-tests of hypotheses. . . ” Nev-
ertheless, as stated above, the F test is the optimum test
for detecting an unknown signal in Gaussian white noise
when the signal lies in a known signal subspace. See
chapter 4 of Scharf.” An example of the application of F
statistics in functional brain mapping is given by Biichel
et al.'” for finding brain regions where significant rela-
tionships exist between regional cerebral blood flow and
word presentation rate in positron emission tomography
(PET).

THEORY

Let the discrete random sequence x[n] (n = 0,1,. ..,
N —1) represent the “observed” fMRI measurements at a
given pixel after estimating and removing the mean and
a drift component and possibly applying preprocessing
steps such as motion correction. The total number of
samples in the sequence, N, is equal to the number of
frames scanned during the fMRI experiment. The ob-
served sequence is assumed to be of the form:

x[n] = psln] + e[n], (D

where s[n] is a zero-mean deterministic (non-random)
activation signal at the pixel under consideration, u is a
non-negative constant factor, and e[n] represents added
Gaussian white noise with variance ¢ (e[n]: N[0,°]).
Eq (1) can be written in vector notation as follows:

X=us +e, (2)

where x, s, and e are N-dimensional vectors that are
represented by N X 1 (column) matrices.

When p = 0, the pixel is not activated and the
observed sequence is merely noise (x = e). When p > 0,
the pixel is said to be activated. Therefore, given the
observed sequence x[n] and the model of Eq. (2) the
problem of deciding whether or not the pixel under
consideration is activated reduces to testing the null
hypothesis Hy:p = 0 versus the alternative hypothesis
Hy:p > 0.

This paper presents optimal threshold tests for the
problem described above under two special cases: 1)
when the activation signal s is assumed to be known and
2) when s is unknown but is assumed to lie in a known
M-dimensional signal subspace of the N-dimensional
measurement space (M < N).

Case la: Known Signal s in Noise of Known Variance
o

The signal model given in Eq. (2) implies that the
random sequence X has a multivariate Gaussian density
function with mean us and covariance matrix o”1, where
I denotes the identity matrix. This probability density
function (pdf) has the form:

1 1
fx(X) = W exp | — F (x - ,U.',S)T(X - ,lLS) .
(3)

Assuming that the activation signal s and the noise
variance o are known, f,(x) is fully determined by the
single parameter w. Our objective is to decide between
Hy:p = 0and H,:p > 0 based on the measured sequence
x. All the useful information that x carries about the
parameter p can be expressed in terms of a single ran-
dom variable, a sufficient statistic for u, given as fol-
lows:

z= —m (4)

Since z is obtained by a linear operation on X, it also has
a normal distribution with mean uw\/s's/c and variance 1
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(z:N[u@/a,l]). Under the null hypothesis H, (u = 0),
the z statistic has a standard normal distribution N[0,1].
Thus, assuming o” is known, activated pixels can be
detected by computing the statistic z from Eq. (4), and
declaring a pixel activated if z is greater than a given
threshold z,. This may be denoted as the z test. For a
given threshold level z,, the probability of a false alarm
or a type I error (the probability of declaring a pixel
activated when it is in fact not) is given by:

1
o= T,z—w

J exp (—u?/2)du. (5)

z

In practice, the threshold value z; is chosen so that Eq.
(5) gives a small probability of false alarm.

The power of the test, B, is defined as the probability
of correctly rejecting H, when H, is in force. It is one
minus the probability of a type II error. When H, is in
force, z:N[,u\/ﬁ/or,lJ and for a given threshold z,, the
power of the test is given by:

L (=
B = N j exp[—(u — ps's/0)2]du.  (6)

20

Unfortunately, since w is not known, 8 cannot be deter-
mined. However, it can be shown that for a given fixed
7o (or alternatively «) and for all w > 0, the z test has a
power (f3) greater than or equal to the power of any other
threshold test whose type I error probability is less than
or equal to a.” Such a test is said to be uniformly most
powerful (UMP) of size a.

Case 1b: Known Signal s in Noise of Unknown
Variance

In general, we do not know the noise variance o” that
may vary from pixel to pixel. Therefore, z cannot be
computed using Eq. (4). To overcome this problem, one
can substitute the following estimate & for o” in Eq. (4):

& = x"0 — P)x/(N — 3y (7)

to obtain the new statistic ¢ given as follows:

o (8)

Ps= T - (9)

The vector P.x gives the projection (component) of x in
the direction of s. Thus, (x — Pyx) is the component of x
which is orthogonal to s. The sum of squares of elements
of this vector is:

(x —Px)'(x — Px)=x"(I — Pyx, (10)

where the right hand side is obtained using the fact that
P, is symmetric (P} = P,) and idempotent (P> = P,).
Dividing the right hand side of Eq. (10) by N — 3 yields
the estimate & given in Eq. (7). The divisor N — 3 is
used because we are assuming that, in addition to the
signal component P.x, a mean and a drift component
have been estimated and subtracted from the time-series.
Therefore, the degrees of freedom are reduced by 3.

When the pixel is activated (u > 0), the statistic ¢
defined in Eq. (8) will have a non-central t-distribution
with N — 3 degrees of freedom and non-centrality pa-
rameter ,u.\/ﬁ/o. Under the null hypothesis H, (i = 0),
the statistic ¢ will have a central f-distribution with N —
3 degrees of freedom. It is important to realize that under
H,, the distribution of ¢ is completely known even though

is unknown. That is, under H,, t is invariant to o”.
This allows us to define the following procedure for
detecting activated pixels:

1. for each pixel, compute the statistic ¢ from Eq. (8),
2. declare the pixel activated if 7 is greater than a given
threshold .

In this paper, the threshold test outlined above is
denoted as the r-test. The probability of type I errors can
be readily computed as follows:

a=j f(u)du, (1)

o

where f,(u) is the Student’s ¢ pdf. In practice, f, is chosen
in order to achieve a small probability of false alarm. The
t-test outlined above can be shown to be UMP of size «
which is invariant to the value of the noise variance o°.°

Case 2: Unknown Signal s

In this subsection, we consider the case when s is
unknown but is assumed to lie in a known M-dimen-
sional subspace of the measurement space. This subspace
is denoted as the signal subspace. Let the signal subspace
be spanned by the basis vectors z, (k = 1,2,..., M).
Then, s can be written as follows:

M
s= D az, = Za, (12)
k=1
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where Z is an N X M matrix with columns z,, and a is
an M X 1 vector with elements @, which are said to be
the coordinates of s with respect to the basis Z. It is
assumed that Z is known but a is unknown.

Let P,x represent the projection of x into the signal
subspace spanned by z,, where P is the N X N projector
matrix given as follows:

P,= Z(Z'Z) 'Z". (13)

An efficient and robust numerical method for computing
P, is to compute the left orthogonal matrix, U, in the
singular value decomposition of Z,"'

Z=USV" (14)

The projector matrix can then be expressed as P, =
uu”.

The remaining component of x is (I—P,)x which is
orthogonal to the signal subspace. The energy of x in the
signal subspace is defined as:

x"PIP,x = x"P;x, (15)

where the right hand side of Eq. (15) is obtained using
the fact that P, is symmetric and idempotent. The energy
of x in the subspace orthogonal to the signal subspace is:

'@ - P)I—Py)x =x"1—-P,)x. (16)

The ratio of energy in the signal subspace per dimension
to the energy in the orthogonal subspace per dimension is
given as follows:

x"P,x/M

= =P N -—M=2)

(17)

Intuitively, for activated pixels the energy per dimension
in P_x should be higher than the energy per dimension in
(I — P,)x. When the pixel is activated (u > 0), the
statistic F would have a non-central F-distribution with
M and N — M — 2 degrees of freedom and non-centrality
parameter u*(Za)"(Za)/o”. Under the null hypothesis H,,
(i = 0), the statistic F would have a central F-distribu-
tion with M and N — M — 2 degrees of freedom. Again,
the reason for subtracting the 2 extra degrees of freedom
from the denominator is that we are assuming that a
mean and a drift component have been estimated and
subtracted from the time-series. It is important to realize
that under H,, the distribution of F is completely known
even though o~ and a are unknown. That is, under Hy, F
is invariant to ¢ and a. This allows us to define the
following procedure for detecting activated pixels:

1. for each pixel, compute the statistic F from Eq. (17),
2. declare the pixel activated if F is greater than a given
threshold F,.

The above procedure is denoted as the F test. The
probability of type I errors can be readily computed as
follows:

o= J fr(u)du, (18)

Fo

where f(u) is the F pdf. F; is chosen in order to achieve
a small probability of false alarm. It can be shown that
the F test outlined above is UMP of size o which is
invariant to o” and a.°

Note that for the special case of the signal subspace
dimension M = 1, F = £ and the F and t-tests are
identical. The assumption of a one dimensional signal
subspace is equivalent to assuming that the shape and
delay of the activation signal are known. Therefore, in
this case, the F test does not present any advantage over
the r-test.

In order to apply the F test, we are required to model
the signal subspace by specifying the basis vectors z
(k = 1,2,..., M). In this paper, a signal subspace is
proposed that is suitable for those experiments in which
the pattern of activation—baseline paradigm is periodic,
say with a period of T scans. The fundamental assump-
tion of the fMRI analysis model is that for such para-
digms, the hemodynamic response is also periodic with
the same frequency. This assumption is more relaxed
than the LTI system model. That is, the “system” does
not have to be an LTI system for this assumption to be
true. Furthermore, the system is assumed to be low-pass
(i.e., the activation signal does not contain high frequen-
cies) which together with the periodicity assumption
allows us to model the activation signal component as a
truncated Fourier series with unknown Fourier coeffi-
cients. Thus, we obtain the following basis vectors z,
(assuming M is even):

z, = [1 cos kw cos 2kw . . . cos(N — 1)kw]"
k=1,...M/2) (19)

z, = [0 sin gw sin 2qw . . . sin (N — 1)gqw]”
Ck=MI2+1,... M), (20)

where ¢ = k—M/2 and w = 27/T. Note that in spite of
their appearance, in general z, are not mutually orthog-
onal. They are orthogonal if N is an integer multiple of 7.,
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Fig. 1. (a)-(e) t-maps (a = 0.01) for delays of 0, 3, 6, 9, and 12 s, respectively. (f) F-map (a = 0.01; M = 6).

However, in this paper we do not make such an assump-
tion.

This choice of the signal subspace has been previ-
ously applied to fMRI data analysis by Bullmore et al.”
However, they suggested a non-parametric testing
method for obtaining the significance of the activated
pixels, as opposed to the F test proposed in this paper.
The theory presented in this paper is valid for any model
of the signal subspace. The success of the detection
algorithm depends on how well the actual activation
signal can be expressed as a linear combination of the
selected basis functions. In general, one must choose a
signal model that best represents the experimental con-
ditions. See the work by Friston et al.'? for an alternative
set of basis vectors in terms of sine functions which
ensure that the activation signal starts and ends with a
value of 0 during each activation epoch.

MATERIALS AND METHODS

In order to test the algorithms presented in this paper,
sets of fMRI motor activation data were utilized. The
experiments were performed using a 1.5 T whole body
system (Siemens Magnetom Vision, Erlangen, Germany)
with a standard head coil. All studies were approved by

the institutional review board at the Research Institute
for Brain and Blood Vessels, and proper informed con-
sent was obtained from all subjects.

The activation task consisted of flexing and stretching
digits 2—-5 on a flat plastic surface within a fixed 2.5-cm
distance without moving the wrist. The frequency of
finger movement was controlled by auditory pacing.
Subjects wore headphones and were paced by metro-
nome sounds created by software on a Macintosh com-
puter. Functional imaging consisted of a single-shot,
blipped, and echo-planar pulse sequence. The acquisition
time for a 128 X 128 slice was 96 ms. Each frame
consisted of five axial slices with a slice thickness of 3
mm and a slice gap of 0.25 mm. A scan consisted of 120
sequential frames (600 slices in total) centered 5 cm
above the axial plane containing the anterior and poste-
rior commissures line (AC-PC line). The echo time (TE)
was 67 ms, and the interscan interval (TR) was 3 s,
yielding a total scan time of 6 min. Subjects were in-
structed to keep their eyes open throughout the studies.
They were provided with instructions and allowed to
practice before the scanning session. After an initial 60 s
rest period, the motor task was performed for 15 s (5
activation frames) followed by a 15 s rest (5 baseline
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Fig. 2. (a)-(e) Observed fMRI time-series (x) for 5 different pixels. (f) Activation—baseline pattern (' = 10). Delayed versions of

this pattern were used to model the activation signal s.

frames). Thus, a total of 10 activation and baseline
frames (T = 10) were acquired during each 30 s period.
The 20 frames that were acquired during the initial 60 s
rest period were discarded in order ensure that the level
of net magnetization had reached a sufficiently steady
state. This left N = 100 frames that contained 10 acti-
vation—baseline cycles. The average intensity image of
the remaining 100 frames was computed and subtracted
from each individual frame. In addition, a linear drift
component was estimated using linear regression and
subtracted from the data at each pixel. No motion cor-
rection was applied to the data.

A “t-map” was obtained by computing the ¢ statistic
using Eq. (8) for all pixels. The t-map was thresholded to
obtain the activated pixels. In computing the ¢ values, the
activation signal s was taken to be delayed versions of
the square wave shown in Figure 2f. The z-test was
repeated a total of five times using delays of d = 0, 1, 2,
3, and 4 frames with respect to x.

In the next step, we formed the N X M matrix Z with
columns z, and computed the projector matrix P, =
UUT, where U is the left orthogonal matrix in the sin-
gular value decomposition of Z. This computation need
only be performed once, since the signal subspace is

Table 1. r and F values for time-series in Fig. 2

Pixel: A B C D E
t(d=0) —2.02 (0.023) —0.56 (0.287) —0.86 (0.195) —1.38 (0.086) 3.6 (0.0002)
t(d =1y —7.10 (107 '9) —1.88 (0.032) 0.55 (0.292) 0.13 (0.446) 9,09 (1074
t(d=2): —11.19 (1079 —1.39 (0.083) —0.26 (0.399) —0.68 (0.248) 8.09 (107"
t(d = 3): —6.57 (107?) —0.96 (0.17) —0.40 (0.345) —1.84 (0.035) 3.91(10°%
t(d = 4): —1.45(0.074) 0.01 (0.494) 0.29 (0.385) 1.05 (0.148) 0.13 (0.45)
F (M = 6): 29.13 (107 '%) 1.92 (0.085) 2.44 (0.031) 3.26 (0.006) 20.26 (107'7)

Boldface font indicates significance at a = 0.001 level.
Numbers in parentheses are significance levels.
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taken to be the same for all pixels in the data set. Note
that the dimension of the signal subspace, M, must al-
ways be less than or equal to T. Otherwise, z, will not
be linearly independent because the rank of Z is
min(M,T).

Following the computation of P,, we obtained an
“F-map” by computing the F statistic using Eq. (17) for
all pixels. The F-map was thresholded to obtain the
activated pixels.

RESULTS AND DISCUSSION

Results from all subjects who were studied consis-
tently showed activation in the motor cortex region of the
brain. As the emphasis of this paper is on the method-
ology of obtaining the activation maps, we leave detailed
interpretation of the results as a subject for future writing
and concentrate here on methodological issues.

Figure 1a-e show the results of the #-test (& = 0.01) in
a single slice from one subject for the five different
delays: d = 0, 1, 2, 3, 4. Clearly, the results are sensitive
to the delay, which is unknown and may vary from
region to region within the brain. Even if the most
appropriate delay is known, it may not be possible to use
it in computing the ¢ values because we can only apply
the delays in units of TR (3 s for the data presented in this
paper). In addition to the unknown delay, the shape of
the reference activation signal may not be the presumed
square wave of Fig. 2f and it may also vary from region
to region. Also, both the shape and delay of the activa-
tion signal may vary with the activation task. These
shortcomings apply equally to both the cross-correlation
method” or equivalently the #-test method presented in
this paper.

Figure 1f shows the activated pixels obtained using
the F test (@ = 0.01). There is little difference between
the results obtained using the r-test at d = 1,2 (Fig. 1b
and Ic) and the F test (Fig. 1f), although, the r-maps
appear to be have slightly higher numbers of spurious
single “activated” pixels. The clear advantage of the F
test is that we do not have to specify the activation signal
s or any delay. For periodic activation—baseline patterns,
s is assumed to lie in the signal subspace Z defined by
Eqs. (19) and (20). The value of M remains an option in
our implementation of the algorithm. Its default value is
set to M = 6 because there appears to be little power in
the activation signal beyond the 3rd harmonic.>’ The
maximum value that can be selected for M is T (in this
Case 10) because the rank of Z equals to min(M,T) and
if M > T, the matrix Z"Z will be singular and P, as
defined in Eq. (13) cannot be computed. In the future, the
use of model selection rules such as that based on the
Akaike information criterion'? (AIC) will be considered
for selecting M.
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Fig. 3. Observed fMRI time-series (x) and its computed signal
subspace component for: (A) the activated pixel A in Fig. 2a;
and (B) the non-activated pixel B in Fig. 2b.

In order to gain more insight into the algorithms, let
us plot and examine the time-series of several selected
pixels. The observed fMRI time-series (x) are plotted for
5 different pixels (denoted as pixels A-E) in Fig. 2(a)-(e).
Pixels B-D were chosen at random from the non-acti-
vated pixels (as declared by the F-test). Pixel A was
chosen from the activated pixels (as detected by the F
test) which showed opposite phase with respect to the
activation—baseline pattern. Pixel E was chosen from the
activated pixels which were in phase with the the acti-
vation—baseline pattern. The activated pixels were lo-
cated in the primary motor area. The 7 values of these
time-series are summarized in Table 1. The ¢ values
shown in boldface font pass the r-test at « = 0.001 level
(t, = 3.18). Pixels A and E pass the t-test at this level.
These pixels, however, do not pass the test when the
delay is d = 4 frames which corresponds to 12 s. Pixel A
is also below the significance threshold when d = 0. The
highest level of significance appears to be when the delay
is between 3 to 6 s.
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Table 2. cc values for time-series in Fig. 2

Pixel: A B

d=10 —0.2 (0.228) —0.057 (0.286)
d=1 —0.584 (10711 —0.188 (0.031)
d=2 —0.751 (1072Y) —0.142 (0.082)
d=3 —0.56 (10719 —0.099 (0.169)
d=4 —0.149 (0.074) 0.002 (0.494)

C D E
—0.087 (0.194) —0.139 (0.085) 0.347 (0.0002)
0.056 (0.292) 0.014 (0.446) 0.676 (107'%)
—0.026 (0.398) —0.07 (0.248) 0.636 (10~1%)
~0.041 (0.345) —0.186 (0.034) 0.373 (107%)

0.03 (0.385) 0.108 (0.147) 0.013 (0.45)

Boldface font indicates significant cc (a = 0.001).
Numbers in parentheses are significance levels.

To detect pixels that have highly significant negative
t values (e.g., pixel A), we must use a two-tailed z-test.
All our results remain valid for such a test, with the
exception that now all pixels for which . . .1... > t; pass
the test, and the threshold level is determined in a slightly
different way as follows:

a= 2[ f,(u)du. (21)
to

This slightly increases the threshold to #, = 3.39 for a =
0.001.

The F values of the time-series of Fig. 2 are also
summarized in Table 1. The F values shown in boldface
font are highly significant and easily pass the F test at a
= 0.001 level (F, = 4.14). The component of x in the
signal subspace, Px, is shown in Fig. 3 for the activated
pixel A and the non-activated pixel B for M = 6. It can
be seen that for the activated pixel, much of the total
energy of the observed fMRI time-series is contained in
the signal subspace. This is not the case for the non-
activated pixel. In other words, the trigonometric Fourier
series model does a better job of explaining the variation
in an activated pixel than in a non-activated pixel. In both
cases, however, the variance of the residual should be
about the same.

Let us at this point compare the -test outlined in the
present paper with the cross-correlation method. There is
a one-to-one correspondence between the cross-correla-
tion coefficient cc given in Eq. (1) of Bandettini et al.®
and our ¢ statistic given in Eq. (8):

t=ccN — NJ 1 — cc? 22)

where N, is the reduction in degrees of freedom due to
the number of free parameters in the model being em-
ployed (in our Case 3). This transformation can be ob-
tained by using the relation x'x = x"P.x + x"(I — P_)x.
The statistic cc is not normally distributed and strictly
speaking, we cannot use Eq. (5) [or equivalently Eq. (13)

of Bandettini et al.?] to obtain the significance threshold
level. To test the significance of the cc values, they can
be mapped using the Fisher’s Z transformation'* to

1 1+cc

z=ilnl—cc'

(23)

The transformed statistic has an approximately normal
distribution with mean O (under the null hypothesis) and
variance 1/(N — 3).

The values of cc and their corresponding significance
levels are compiled in Table 2 for the time-series in Fig.
2 and the five different delays. Comparison of Tables 1
and 2 reveals that the significance levels of c¢c and ¢
values are almost identical for all pixels. Indeed for all
practical purposes, the cc and #-tests can be considered
equivalent.

In the present paper we have not considered spatial
correlations in the image. The problem of how to make
inferences based upon the f-maps and F-maps in the
presence of spatial correlations has been addressed by
Worsley.'?

CONCLUSIONS

We have outlined two statistical tests for detecting
activated pixels in fMRI brain activation studies. The
t-test is equivalent to the cross-correlation method. The
disadvantage of the z-test and cross-correlation methods
is that, in order to apply them to fMRI activation detec-
tion, we must know the shape and delay of the activation
signal s. The F test does not require knowledge of 5. On
the other hand, the F test requires knowledge of a sub-
space in which s lies. In this paper, we proposed a
subspace which is appropriate for experiments in which
the activation—baseline imaging paradigm is periodic.
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